IE62, the major transcriptional activator protein encoded by varicella-zoster virus (VZV), locates to the nucleus when expressed in transfected cells. We show here that cytoplasmic forms of IE62 accumulate in transfected and VZV-infected cells as the result of the protein kinase activity associated with VZV open reading frame 66 (ORF66). Expression of the ORF66 protein kinase but not the VZV ORF47 protein kinase impaired the ability of coexpressed IE62 to transactivate promoter-reporter constructs. IE62 that was coexpressed with the ORF66 protein accumulated predominantly in the cytoplasm, whereas the normal nuclear localization of other proteins was not affected by the ORF66 protein. In cells infected with VZV, IE62 accumulated in the cytoplasm at late times of infection, whereas in cells infected with a VZV recombinant unable to express ORF66 protein (ROka66S), IE62 was completely nuclear. Point mutations introduced into the predicted serine/ threonine catalytic domain and ATP binding domain of ORF66 abrogated its ability to influence IE62 nuclear localization, indicating that the protein kinase activity was required. The region of IE62 that was targeted by ORF66 was mapped to amino acids 602 to 733. IE62 peptides containing this region were specifically phosphorylated in cells coexpressing the ORF66 protein kinase and in cells infected with wild-type VZV but were not phosphorylated in cells infected with ROka66S. We conclude that the ORF66 protein kinase phosphorylates IE62 to induce its cytoplasmic accumulation, most likely by inhibiting IE62 nuclear import.
IE62, the major transcriptional regulatory protein encoded by varicella-zoster virus (VZV), is associated with the tegument of gradient-purified virions. Here, we show that most, if not all, of the association requires the expression of open reading frame 66 (ORF66), a protein kinase. The association of IE62 with wild-type VZV virions was confirmed using immunoelectron microscopy with IE62-specific antibodies, which reacted with virions in ultrathin sections of VZV-infected cells. Fractionated purified virions from cells infected with recombinant VZV ROka contained substantial levels of the 175-kDa virion IE62 protein and also contained the ORF66 protein. However, virions from cells infected with recombinant VZV ROka66S, in which ORF66 is disrupted, lacked not only the ORF66 protein but also most of the virion 175-kDa IE62 polypeptide. The virion-associated protein kinase activity was still present in ROka66S virions, although the 175-kDa protein substrate for the virion kinase was absent, implying that the virion protein kinase is encoded by genes other than ORF66. The very low levels of IE62 in ROka66S virions indicate that ORF66 protein mediates the redistribution of IE62 to sites of tegument assembly. IE62 was resolved into several species from VZV-infected cells which showed mobility differences between ROka and ROka66S, and a specific form of IE62 was detected in ROka virions. These results are consistent with a role for the ORF66-mediated phosphorylation of IE62 that results in cytoplasmic distribution of the regulatory protein for tegument inclusion. They support a model in which VZV tegument acquisition occurs in the cytoplasm. As such, two unusual features of VZV IE62, namely, its virion inclusion and its phosphorylation and nuclear exclusion by the ORF66 protein kinase, are functionally linked.Varicella-zoster virus (VZV) is the ubiquitous human alphaherpesvirus that causes chickenpox upon primary infection and herpes zoster following reactivation from a long period of latency (reviewed in reference 1). In lytically infected cells, VZV gene expression occurs in a sequential cascade (34) and is likely regulated predominantly at the transcriptional level like that seen in cells infected with herpes simplex virus type 1 (HSV-1) (15). Viral genes are subdivided into immediateearly, early, and late, depending upon the requirements for their transcription and the timing of their synthesis. In transfected cells, transcription of VZV promoter-reporter constructs is influenced by a subset of VZV proteins including those encoded by open reading frames (ORFs) 4, 61, 62, 63, 10, and 29, and it is thus likely that these are the predominant regulatory proteins in VZV-infected cells (reviewed in reference 19).The major transactivator of viral genes is the product of the ORF62 gene, which stimulates transcription from all VZV promoters studied to date, including its own in certain cells (16,24,28,31,32). In VZV-infected cells, ORF62 is expressed as an immediate-early gene (10) and encodes a 1,310-residue protein desi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.