Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.
Psoriasis is a complex disease with an expanding definition of its pathological features. We sought to expand/refine the psoriasis transcriptome using 85 paired lesional and non-lesional samples from a cohort of patients with moderate-to-severe psoriasis vulgaris who were not receiving active psoriasis therapy. This new analysis identified 4,175 probe sets (representing 2,725 unique known genes) as being differentially expressed in psoriasis lesions compared with matched biopsies of non-lesional skin when the following criteria were applied: >2-fold change and false discovery rate <0.05. These probe sets represent the largest and most comprehensive set of genes defining psoriasis at the molecular level and within the previously unidentified genes, a link to functional pathways associated with metabolic diseases/diabetes and to cardiovascular risk pathways is identified. In addition, we profiled the serum of moderate-to-severe psoriatics compared with healthy controls to assess the overlap of overexpressed lesional genes with overexpressed systemic proteins. We identified linkage of functional pathways in lesional skin associated with metabolic diseases/diabetes and cardiovascular risk with those pathways overexpressed in the serum, suggesting a potential linkage between altered gene transcription in the skin and comorbidities commonly seen in patients with moderate-to-severe psoriasis.
Structural changes (deletions, insertions, and inversions) between human and chimpanzee genomes have likely had a significant impact on lineage-specific evolution because of their potential for dramatic and irreversible mutation. The low-quality nature of the current chimpanzee genome assembly precludes the reliable identification of many of these differences. To circumvent this, we applied a method to optimally map chimpanzee fosmid paired-end sequences against the human genome to systematically identify sites of structural variation Ն12 kb between the two species. Our analysis yielded a total of 651 putative sites of chimpanzee deletion (n = 293), insertions (n = 184), and rearrangements consistent with local inversions between the two genomes (n = 174). We validated a subset (19/23) of insertion and deletions using PCR and Southern blot assays, confirming the accuracy of our method. The events are distributed throughout the genome on all chromosomes but are highly correlated with sites of segmental duplication in human and chimpanzee. These structural variants encompass at least 24 Mb of DNA and overlap with >245 genes. Seventeen of these genes contain exons missing in the chimpanzee genomic sequence and also show a significant reduction in gene expression in chimpanzee. Compared with the pioneering work of Yunis, Prakash, Dutrillaux, and Lejeune, this analysis expands the number of potential rearrangements between chimpanzees and humans 50-fold. Furthermore, this work prioritizes regions for further finishing in the chimpanzee genome and provides a resource for interrogating functional differences between humans and chimpanzees.
Centromeres, the sites of spindle attachment during mitosis and meiosis, are located in specific positions in the human genome, normally coincident with diverse subsets of alpha satellite DNA. While there is strong evidence supporting the association of some subfamilies of alpha satellite with centromere function, the basis for establishing whether a given alpha satellite sequence is or is not designated a functional centromere is unknown, and attempts to understand the role of particular sequence features in establishing centromere identity have been limited by the near identity and repetitive nature of satellite sequences. Utilizing a broadly applicable experimental approach to test sequence competency for centromere specification, we have carried out a genomic and epigenetic functional analysis of endogenous human centromere sequences available in the current human genome assembly. The data support a model in which functionally competent sequences confer an opportunity for centromere specification, integrating genomic and epigenetic signals and promoting the concept of context-dependent centromere inheritance.
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.