The ability to spatially control cellular adhesion in a continuous manner on a biocompatible substrate is an important factor in designing new biomaterials for use in wound healing and tissue engineering applications. In this work, a novel method of engineering cell-adhesive RGD-ligand density gradients to control specific cell adhesion across a substrate is presented. Polymer brushes exhibiting spatially defined gradients in chain density are created and subsequently functionalized with RGD to create ligand density gradients capable of inducing cell adhesion on an otherwise weakly adhesive substrate. Cell studies indicate that these ligand-functionalized surfaces are noncytotoxic, with cellular adhesion increasing with RGD-ligand density across the gradient brush surface.
Development of tissue-engineered devices may be enhanced by combining cells with porous absorbable polymeric scaffolds before implantation. The cells are seeded throughout the scaffolds and allowed to proliferate in vitro for a predetermined amount of time. The distribution of cells throughout the porous material is one critical component determining success or failure of the tissue-engineered device. This can influence both the successful integration of the device with the host tissue as well as the development of a vascularized network throughout the entire scaffold volume. This research sought to compare different seeding and proliferation methods to select an ideal method for a polyglycolide/aortic endothelial cell system. Two seeding environments, static and dynamic, and three proliferation environments, static, dynamic, and bioreactor, were analyzed, for a total of six possible methods. The six seeding and proliferation combinations were analyzed following a 1-week total culture time. It was determined that for this specific system, dynamic seeding followed by a dynamic proliferation phase is the least promising method and dynamic seeding followed by a bioreactor proliferation phase is the most promising.
Soft tissue reconstruction using tissue-engineered constructs requires the development of materials that are biocompatible and support cell adhesion and growth. The objective of this study was to evaluate the use of macroporous hydrogel fragments that were formed using either unmodified alginate or alginate covalently linked with the fibronectin cell adhesion peptide RGD (alginate-RGD). These materials were injected into the subcutaneous space of adult, domesticated female sheep and harvested for histological comparisons at 1 and 3 months. In addition, the alginate-RGD porous fragments were seeded with autologous sheep preadipocytes isolated from the omentum, and these cell-based constructs were also implanted. The results from this study indicate that both the alginate and alginate-RGD subcutaneous implants supported tissue and vascular ingrowth. Furthermore, at all time points of the experiment, a minimal inflammatory response and capsule formation surrounding the implant were observed. The implanted materials also maintained their sizes over the 3-month study period. In addition, the alginate-RGD fragments supported the adhesion and proliferation of sheep preadipocytes, and adipose tissue was present within the transplant site of these cellular constructs, which was not present within the biomaterial control sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.