We provide a review of fungi, yeasts, and slime molds that have been found in natural solution caves and mines worldwide. Such habitats provide frequent roost sites for bats, and in eastern North America the environmental conditions that support white-nose syndrome, a lethal fungal disease currently devastating bat populations. A list of 1029 species of fungi, slime moulds, and yeasts in 518 genera have been documented from caves and mines worldwide in 225 articles. Ascomycota dominate the cave environment. Most research has been conducted in temperate climates, especially in Europe. A mean of 17.9±24.4SD fungal species are reported per study. Questions remain about the origin and ecological roles of fungi in caves, and which, if any, are cave-specialists. In the northern hemisphere, caves are generally characterized by relatively stable, low temperatures and a lack of organic substrates. This environment favors communities of oligotrophic, psychrotolerant fungi. Data that may help explain how cave environmental features and faunas inf luence the introduction and transmission of cave fungi remains scant
Malassezia is a genus of medically-important, lipid-dependent yeasts that live on the skin of warm-blooded animals. The 17 described species have been documented primarily on humans and domestic animals, but few studies have examined Malassezia species associated with more diverse host groups such as wildlife. While investigating the skin mycobiota of healthy bats, we isolated a Malassezia sp. that exhibited only up to 92% identity with other known species in the genus for the portion of the DNA sequence of the internal transcribed spacer region that could be confidently aligned. The Malassezia sp. was cultured from the skin of nine species of bats in the subfamily Myotinae; isolates originated from bats sampled in both the eastern and western United States. Physiological features and molecular characterisation at seven additional loci (D1/D2 region of 26S rDNA, 18S rDNA, chitin synthase, second largest subunit of RNA polymerase II, β-tubulin, translation elongation factor EF-1α, and minichromosome maintenance complex component 7) indicated that all of the bat Malassezia isolates likely represented a single species distinct from other named taxa. Of particular note was the ability of the Malassezia sp. to grow over a broad range of temperatures (7–40 °C), with optimal growth occurring at 24 °C. These thermal growth ranges, unique among the described Malassezia, may be an adaptation by the fungus to survive on bats during both the host's hibernation and active seasons. The combination of genetic and physiological differences provided compelling evidence that this lipid-dependent yeast represents a novel species described herein as Malassezia vespertilionis sp. nov. Whole genome sequencing placed the new species as a basal member of the clade containing the species M. furfur, M. japonica, M. obtusa, and M. yamatoensis. The genetic and physiological uniqueness of Malassezia vespertilionis among its closest relatives may make it important in future research to better understand the evolution, life history, and pathogenicity of the Malassezia yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.