High-throughput antibody generation and characterization A phage display library has been constructed containing over 1010 human antibodies, allowing the large-scale generation of antibodies. Over 38,000 recombinant antibodies against 292 antigens were selected, screened and sequenced, and 4,400 resultant unique clones characterized further.
Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1-and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1-and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wntdriven cancer.antibody therapeutics | cancer T he Wnt/β-catenin pathway regulates diverse biological processes during development and tissue homeostasis by modulating the protein stability of β-catenin (1-3). In the absence of extracellular Wnt proteins, cytoplasmic β-catenin is associated with the β-catenin destruction complex and degraded by ubiquitinmediated proteolysis. Wnt signals are transduced by two distinct receptors, the serpentine receptor Frizzled (Frz) and the singlespan transmembrane proteins LRP5 or LRP6. Wnt proteins promote the assembly of the Frz-LRP5/6 signaling complex and induce phosphorylation of LRP5 or LRP6. Phosphorylated LRP5 or LRP6 inactivates the β-catenin degradation complex, allowing stabilized β-catenin to enter the nucleus, bind to the TCF transcription factors, and act as a transcriptional coactivator.The extracellular domain of LRP5 or LRP6 contains four YWTD-type β-propeller domains each followed by an EGF-like domain and an LDLR domain. Each propeller contains six YWTD motifs that form a six-bladed β-propeller structure (4). Biochemical studies suggest that Wnt proteins physically interact with both Frz and LRP6 and induce the formation of an Frz-
In the injured liver hepatic stellate cells (HSCs) undergo a dramatic phenotypic transformation known as ''activation'' in which they become myofibroblast-like and express high levels of the tissue inhibitor of metalloproteinase 1 (TIMP-1). HSC activation is accompanied by transactivation of the TIMP-1 promoter. Truncation mutagenesis studies delineated a minimal active promoter consisting of nucleotides ؊102 to ؉60 relative to the major start site for transcription. Removal of an AP-1 site located at nucleotides ؊93 to ؊87 caused almost a complete loss of promoter activity.
BackgroundIn the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44), kinases (EGFR-cytoplasmic domain, CDK2 and 4), proteases (MMP1, CASP2), signal transduction proteins (GRB2, RAF1, HRAS) and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX). Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study.ResultsSeveral protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY), or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx) and maltose binding protein (MBP) were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions.ConclusionsBy analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases proteins may be truncated to minimise molecular weight and the numbers of contiguous hydrophobic amino acids and low complexity regions to aid soluble expression in E. coli.
Retinoic acid, acting through the nuclear retinoic acid receptor β2(RARβ2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth and RARβ2 is upregulated. By contrast, in the adult mouse spinal cord, which cannot regenerate, no such upregulation of RARβ2 by retinoic acid is observed and no neurites are extended in vitro. To test our hypothesis that the upregulation of RARβ2 is crucial to neurite regeneration, we have transduced adult mouse or rat spinal cord in vitro with a minimal equine infectious anaemia virus vector expressing RARβ2. After transduction, prolific neurite outgrowth occurs. Outgrowth does not occur when the cord is transduced with a different isoform of RARβ nor does it occur following treatment with nerve growth factor. These data demonstrate that RARβ2 is involved in neurite outgrowth, at least in vitro, and that this gene may in the future be of some therapeutic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.