Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.
The roles of iron and light in controlling biomass and primary productivity are clearly established in the Southern Ocean. However, their influence on net community production (NCP) and carbon export remains to be quantified. To improve our understanding of NCP and carbon export production in the Subantarctic Zone (SAZ) and the northern reaches of the Polar Frontal Zone (PFZ), we conducted continuous onboard determinations of NCP as part of the Sub-Antarctic Sensitivity to Environmental Change (SAZ-Sense) study, which occurred in January–February 2007. Biological O<sub>2</sub> supersaturation was derived from measuring O<sub>2</sub>/Ar ratios by equilibrator inlet mass spectrometry. Based on these continuous measurements, NCP during the austral summer 2007 in the Australian SAZ was approximately 43 mmol O<sub>2</sub> m<sup>−2</sup> d<sup>−1</sup>. NCP showed significant spatial variability, with larger values near the Subtropical front, and a general southward decrease. For shallower mixed layers (<50 m), dissolved Fe concentrations and Fe sufficiency, estimated from variable fluorescence, correlated strongly with NCP. The strong correlation between NCP and dissolved Fe may be difficult to interpret because of the correlation of dissolved Fe to MLD and because the concentration of iron may not be a good indicator of its availability. At stations with deeper mixed layers, NCP was consistently low, regardless of iron sufficiency, consistent with light availability also being an important control of NCP. Our new observations provide independent evidence for the critical roles of iron and light in mediating carbon export from the Southern Ocean mixed layer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.