Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.
This study looks at pulsatile blood flow through four different right coronary arteries, which have been reconstructed from bi-plane angiograms. A non-Newtonian blood model (the Generalised Power Law), as well as the usual Newtonian model of blood viscosity, is used to study the wall shear stress in each of these arteries over the entire cardiac cycle. The difference between Newtonian and non-Newtonian blood models is also studied over the whole cardiac cycle using the recently generalised global non-Newtonian importance factor. In addition, the flow is studied by considering paths of massless particles introduced into the flow field.The study shows that, when studying the wall shear stress distribution for transient blood flow in arteries, the use of a Newtonian blood model is a reasonably good approximation. However, to study the flow within the artery in greater detail, a non-Newtonian model is more appropriate.
These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Scientific Data | (2020) 7:94 | https://doi.org/10.1038/s41597-020-0406-x www.nature.com/scientificdata www.nature.com/scientificdata/ circum-Antarctic synthesis yet exists that crosses species boundaries. This deficiency prompted the Expert Group on Birds and Marine Mammals (EG-BAMM) and the Expert Group on Antarctic Biodiversity Informatics (EGABI) of the Scientific Committee on Antarctic Research (SCAR; www.scar.org) to initiate in 2010 the Retrospective Analysis of Antarctic Tracking Data (RAATD). RAATD aims to advance our understanding of fundamental and applied questions in a data-driven way, matching research priorities already identified by the SCAR Horizon Scan 9,21 and key questions in animal movement ecology 22 . For these reasons, we worked on the collation, validation and preparation of tracking data collected south of 45 °S. Data from over seventy contributors (Data Contacts and Citations 23 ) were collated. This database includes information from seventeen predator species, 4,060 individuals and over 2.9 million at-sea locations. To exploit this unique dataset, RAATD is undertaking a multi-species assessment of habitat use for higher predators in the Southern Ocean 24 .RAATD will provide a greater understanding of predator distributions under varying climate regimes, and provide outputs that can inform spatial management and planning decisions by management authorities such as the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR; www.ccamlr.org). Our synopsis and analysis of multi-predator tracking data will also highlight regional or seasonal data-gaps.Scientific Data | (2020) 7:94 | https://doi.
This study looks at pulsatile blood flow through four different right coronary arteries, which have been reconstructed from biplane angiograms. A non-Newtonian blood model (the Generalised Power Law), as well as the usual Newtonian model of blood viscosity, is used to study the wall shear stress in each of these arteries over the entire cardiac cycle. The difference between Newtonian and non-Newtonian blood models is also studied over the whole cardiac cycle using the recently generalised global non-Newtonian importance factor. In addition, the flow is studied by considering paths of massless particles introduced into the flow field. The study shows that, when studying the wall shear stress distribution for transient blood flow in arteries, the use of a Newtonian blood model is a reasonably good approximation. However, to study the flow within the artery in greater detail, a non-Newtonian model is more appropriate.
Sudden losses to food production-shocks-and their consequences across land and sea pose cumulative threats to global sustainability. We conduct an integrated assessment of global production data from crop, livestock, aquaculture, and fisheries sectors over 53 years to understand how shocks occurring in one food sector can create diverse and linked challenges among others. We show that some regions are shock hotspots, exposed frequently to shocks across multiple sectors. Critically, shock frequency has increased through time on land and sea at a global scale. Geopolitical and extreme-weather events were the main shock drivers identified, although with considerable differences across sectors. We illustrate how socialecological drivers, influenced by dynamics of the food system, can spillover multiple food sectors and create synchronous challenges or trade-offs among terrestrial and aquatic systems. In a more shock-prone and interconnected world, bold food policy and social protection mechanisms that help people anticipate, cope and recover from losses will be central to sustainability. Main Food production shocks pose significant challenges for the UN Sustainable Development Goals (SDGs) 1 because of their potential to disrupt food supply and security, livelihoods, and human well-being 2-7. A wide range of social-ecological pressures on food systems can drive shocks through direct or indirect mechanisms. For example, droughts or floods can rapidly increase mortality of crops, livestock, or farmed fish; whereas sudden outbreaks of violent conflict may prevent farmers or fishers accessing their production systems 7,8. Prolonged overfishing can also produce unexpected, sudden losses in catch as exploited fish populations are pushed toward ecological tipping points, after which stock collapse occurs 9. People's vulnerability to shock events rests on their capacity to adapt, the scale and frequency of RSC, JLB, KLN, and BSH designed the study, and RSC conducted the analysis and wrote the paper. TAR assisted with figures and AJ assisted with qualitative analysis of shock drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.