To determine the functional utility for general mobility of peripheral prism glasses, a novel visual field expansion device for hemianopia, in a large-scale, community-based, multicenter study with long-term follow-up. Methods: Forty-three participants with homonymous hemianopia were fitted with temporary press-on Fresnel peripheral prism segments of 40 prism diopters. Follow-up questionnaires evaluating functional benefits for mobility were administered in the office at week 6. Participants who continued wearing the prisms were interviewed again by telephone after a median of 12 months. Primary outcome measures included clinical success (a clinical decision to continue wear) and 5-point ratings of prism helpfulness for obstacle avoidance when walking. Results: Thirty-two participants (74%) continued prism wear at week 6, and 20 (47%) were still wearing the prisms after 12 months (median time, 8 hours per day). These participants rated the prism glasses as very helpful for obstacle avoidance and reported significant benefits for obstacle avoidance in a variety of mobility situations. Success rates varied among clinic groups (27%-81%), with higher rates at the clinics that fitted more patients. Conclusion: Our results demonstrate the functional utility of peripheral prism glasses as a general mobility aid for patients with hemianopia.
PurposeHorizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect.MethodsWe developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms).ResultsA modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield.ConclusionsConventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other field expansion applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.