cArtemisinin resistance in Plasmodium falciparum parasites in Southeast Asia is a major concern for malaria control. Its emergence at the China-Myanmar border, where there have been more than 3 decades of artemisinin use, has yet to be investigated. Here, we comprehensively evaluated the potential emergence of artemisinin resistance and antimalarial drug resistance status in P. falciparum using data and parasites from three previous efficacy studies in this region. These efficacy studies of dihydroartemisinin-piperaquine combination and artesunate monotherapy of uncomplicated falciparum malaria in 248 P. falciparum patients showed an overall 28-day adequate clinical and parasitological response of >95% and day 3 parasite-positive rates of 6.3 to 23.1%. Comparison of the 57 K13 sequences (24 and 33 from day 3 parasite-positive and -negative cases, respectively) identified nine point mutations in 38 (66.7%) samples, of which F446I (49.1%) and an N-terminal NN insertion (86.0%) were predominant. K13 propeller mutations collectively, the F446I mutation alone, and the NN insertion all were significantly associated with day 3 parasite positivity. Increased ring-stage survival determined using the ring-stage survival assay (RSA) was highly associated with the K13 mutant genotype. Day 3 parasite-positive isolates had ϳ10 times higher ring survival rates than day 3 parasitenegative isolates. Divergent K13 mutations suggested independent evolution of artemisinin resistance. Taken together, this study confirmed multidrug resistance and emergence of artemisinin resistance in P. falciparum at the China-Myanmar border. RSA and K13 mutations are useful phenotypic and molecular markers for monitoring artemisinin resistance.
BackgroundThe malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum.MethodsUsing different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes.ResultsWe report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5 % of all annotated genes. Almost 90 % (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27 % of RBPs have elevated expression in gametocytes, while 47 and 24 % have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes.ConclusionsThe Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2092-1) contains supplementary material, which is available to authorized users.
Drug resistance has emerged as one of the greatest challenges facing malaria control. The recent emergence of resistance to artemisinin (ART) and its partner drugs in ART-based combination therapies (ACT) is threatening the efficacy of this front-line regimen for treating Plasmodium falciparum parasites. Thus, an understanding of the molecular mechanisms that underlie the resistance to ART and the partner drugs has become a high priority for resistance containment and malaria management. Using genome-wide association studies, we investigated the associations of genome-wide single nucleotide polymorphisms with in vitro sensitivities to 10 commonly used antimalarial drugs in 94 P. falciparum isolates from the China-Myanmar border area, a region with the longest history of ART usage. We identified several loci associated with various drugs, including those containing pfcrt and pfdhfr. Of particular interest is a locus on chromosome 10 containing the autophagy-related protein 18 (ATG18) associated with decreased sensitivities to dihydroartemisinin, artemether and piperaquine – an ACT partner drug in this area. ATG18 is a phosphatidylinositol-3-phosphate binding protein essential for autophagy and recently identified as a potential ART target. Further investigations on the ATG18 and genes at the chromosome 10 locus may provide an important lead for a connection between ART resistance and autophagy.
These results suggest that altered hemoglobin digestion due to FP2a mutations may contribute to artemisinin resistance.
Molting in arthropods is orchestrated by a series of endocrine changes that occur towards the end of an instar. However, little is understood about the mechanisms that trigger these endocrine changes. Here, nutritional inputs were manipulated to investigate the minimal nutritional inputs required for a Manduca sexta larva to initiate a molt. Amino acids were found to be necessary for a larva to molt, indicating the involvement of an amino acid sensitive pathway. Feeding rapamycin, an inhibitor of the target of rapamycin (TOR) signaling, delayed the onset of a molt and resulted in abnormally larger larvae. Rapamycin also suppressed the growth of the prothoracic glands relative to the whole body growth, and this was accompanied by suppression of ecdysone production and secretion. Higher doses of rapamycin also slowed the growth rate, indicating that TOR signaling also plays a role in systemic growth. TOR signaling therefore couples the nutritional status of the larva to the endocrine system to regulate the timing of a molt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.