Adult bone marrow (BM) contains cells capable of differentiating along hematopoietic (Lin(+)) or non-hematopoietic (Lin(-)) lineages. Lin(-) hematopoietic stem cells (HSCs) have recently been shown to contain a population of endothelial precursor cells (EPCs) capable of forming blood vessels. Here we show that intravitreally injected Lin(-) BM cells selectively target retinal astrocytes, cells that serve as a template for both developmental and injury-associated retinal angiogenesis. When Lin(-) BM cells were injected into neonatal mouse eyes, they extensively and stably incorporated into forming retinal vasculature. When EPC-enriched HSCs were injected into the eyes of neonatal rd/rd mice, whose vasculature ordinarily degenerates with age, they rescued and maintained a normal vasculature. In contrast, normal retinal angiogenesis was inhibited when EPCs expressing a potent angiostatic protein were injected. We have demonstrated that Lin(-) BM cells and astrocytes specifically interact with one another during normal angiogenesis and pathological vascular degeneration in the retina. Selective targeting with Lin(-) HSC may be a useful therapeutic approach for the treatment of many ocular diseases.
Inherited retinal degenerations afflict 1 in 3,500 individuals and are a heterogeneous group of diseases that result in profound vision loss, usually the result of retinal neuronal apoptosis. Atrophic changes in the retinal vasculature are also observed in many of these degenerations. While it is thought that this atrophy is secondary to diminished metabolic demand in the face of retinal degeneration, the precise relationship between the retinal neuronal and vascular degeneration is not clear. In this study we demonstrate that whenever a fraction of mouse or human adult bone marrow-derived stem cells (lineage-negative hematopoietic stem cells [Lin- HSCs]) containing endothelial precursors stabilizes and rescues retinal blood vessels that would ordinarily completely degenerate, a dramatic neurotrophic rescue effect is also observed. Retinal nuclear layers are preserved in 2 mouse models of retinal degeneration, rd1 and rd10, and detectable, albeit severely abnormal, electroretinogram recordings are observed in rescued mice at times when they are never observed in control-treated or untreated eyes. The normal mouse retina consists predominantly of rods, but the rescued cells after treatment with Lin- HSCs are nearly all cones. Microarray analysis of rescued retinas demonstrates significant upregulation of many antiapoptotic genes, including small heat shock proteins and transcription factors. These results suggest a new paradigm for thinking about the relationship between vasculature and associated retinal neuronal tissue as well as a potential treatment for delaying the progression of vision loss associated with retinal degeneration regardless of the underlying genetic defect.
Pathological angiogenesis contributes directly to profound loss of vision associated with many diseases of the eye. Recent work suggests that human tyrosyl-and tryptophanyl-tRNA synthetases (TrpRS) link protein synthesis to signal transduction pathways including angiogenesis. In this study, we show that a recombinant form of a COOH-terminal fragment of TrpRS is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in a mouse model and of naturally occurring retinal angiogenesis in the neonatal mouse. The angiostatic activity is dose-dependent in both systems. The recombinant fragment is similar in size to one generated naturally by alternative splicing and can be produced by proteolysis of the full-length protein. In contrast, the full-length protein is inactive as an antagonist of angiogenesis. These results suggest that fragments of TrpRS, as naturally occurring and potentially nonimmunogenic anti-angiogenics, can be used for the treatment of neovascular eye diseases.
Inherited retinal degenerations afflict 1 in 3,500 individuals and are a heterogeneous group of diseases that result in profound vision loss, usually the result of retinal neuronal apoptosis. Atrophic changes in the retinal vasculature are also observed in many of these degenerations. While it is thought that this atrophy is secondary to diminished metabolic demand in the face of retinal degeneration, the precise relationship between the retinal neuronal and vascular degeneration is not clear. In this study we demonstrate that whenever a fraction of mouse or human adult bone marrow-derived stem cells (lineage-negative hematopoietic stem cells [Lin -HSCs]) containing endothelial precursors stabilizes and rescues retinal blood vessels that would ordinarily completely degenerate, a dramatic neurotrophic rescue effect is also observed. Retinal nuclear layers are preserved in 2 mouse models of retinal degeneration, rd1 and rd10, and detectable, albeit severely abnormal, electroretinogram recordings are observed in rescued mice at times when they are never observed in control-treated or untreated eyes. The normal mouse retina consists predominantly of rods, but the rescued cells after treatment with Lin -HSCs are nearly all cones. Microarray analysis of rescued retinas demonstrates significant upregulation of many antiapoptotic genes, including small heat shock proteins and transcription factors. These results suggest a new paradigm for thinking about the relationship between vasculature and associated retinal neuronal tissue as well as a potential treatment for delaying the progression of vision loss associated with retinal degeneration regardless of the underlying genetic defect.
Strategies for retargeting adenoviral (Ad) vectors have been developed, but their in vivo efficacy remains to be demonstrated. Gene delivery to specific ocular cell types represents an approach to treating many diseases that cause irreversible blindness. One of these cell types, the photoreceptor (PR), is not infected by standard Ad5-based vectors. We evaluated gene delivery after intraocular injection of Ads pseudotyped with three different fiber proteins and found three distinct patterns of infection. An intravitreally injected Ad5 vector readily infected the iris, corneal endothelium, and ciliary body, while few cells in the retina expressed transgene product. In contrast, an Ad3-pseudotyped virus selectively transduced ciliary body, of interest for treating diseases such as glaucoma. A vector pseudotyped with the fiber protein of Ad37 transduced PRs as well as ciliary body. This finding has potential application to the treatment of retinal degenerative or neovascular diseases. These studies demonstrate cell type-selective gene delivery in vivo with retargeted Ads, provide information about the cellular tropisms of several Ad serotypes, and should lead to improved strategies for preserving vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.