Previous studies identified the tetraspanin protein CD9 in myelinating oligodendrocytes. The present report extends these observations by identifying CD9 in a subpopulation of oligodendrocyte progenitor cells (OPCs) and in premyelinating oligodendrocytes in rodents. NG2-positive cells expressed CD9 in a temporal and spatial pattern during development that was consistent with CD9 expression in OPCs just prior to their differentiation into premyelinating oligodendrocytes. NG2-positive cells in mature brains were CD9-negative. CD9 expression during oligodendrocyte development in vitro supported this hypothesis, as all CD9-positive cells became O4-positive when switched to oligodendrocyte differentiating media. CD9 immunoreactivity was enriched in myelinating oligodendrocytes and their processes, and the outer aspects of myelin internodes. Immunoprecipitation of CD9 from postnatal rat cerebrum coprecipitated beta1 integrin, CD81, and Tspan-2, another tetraspanin protein recently identified in oligodendrocytes. Following surface biotinylation of oligodendrocytes in vitro, biotinylated beta1 integrin was identified in a CD9 immunoprecipitate. These data support a molecular link between surface integrins and a CD9, Tspan-2 molecular web during the differentiation of oligodendrocytes. Oligodendrocyte production and myelination appears to be normal in CD9-deficient mice. These data support the hypothesis that CD9 helps form the tetraspanin web beneath the plasma membranes of progenitor cells committed to oligodendrogenesis, but that CD9 is not essential for oligodendrogenesis and myelination.
Cellular specification of the oligodendrocyte lineage occurs through a series of stages identified by expression of distinct biochemical characteristics. The best characterized oligodendrocyte progenitor cell (OPC) in vitro is the bipotential O2-A progenitor, identified by labeling with monoclonal antibody A2B5, which proliferates predominantly in response to platelet derived growth factor (PDGF). The cellular ancestors of O2-A progenitor cells are currently unclear. In vivo OPCs can be identified by expression of the cell surface markers NG2 (a sulfated proteoglycan) and platelet derived growth factor receptor alphaR). Substantial evidence supports the generation of oligodendrocytes from NG2(+), PDGFalphaR(+) cells both in vivo and in vitro. The developmental relationship between NG2(+) cells and A2B5(-) positive cells is unknown and it is unclear whether they represent identical, partially overlapping or nonoverlapping populations of cells. Here we show that in cultures of developing brain NG2(+) and A2B5(+) cells arise from overlapping cell populations. NG2(+) cells appear prior to the expression of A2B5(+) cells and generate A2B5(+) cells. We propose that during development NG2(+)/A2B5(-) cells (pre-OPCs) represent the direct ancestor to A2B5(+) O2A progenitor cells (OPCs).
Alterations of molecules that mediate dopaminergic signal transduction have been found in schizophrenia, supporting the hypothesis of altered dopaminergic neurotransmission in this illness. To further explore this hypothesis, the authors measured transcript expression of three proteins involved in dopamine (DA) signaling in postmortem dorsolateral prefrontal and anterior cingulate cortex of elderly schizophrenic subjects and a comparison group. The transcript encoding calcyon, a protein that potentiates crosstalk between D1 DA receptors and Gq/11-linked receptors, was increased in schizophrenic prefrontal and cingulate cortex by 25%. Transcript levels of spinophilin, a protein enriched in dendritic spines that modulates excitatory neurotransmission, were increased 22% in dorsolateral prefrontal cortex but were unchanged in anterior cingulate cortex in schizophrenia. Levels of DARPP-32 mRNA, a downstream effector of dopaminergic neurotransmission, were similar in both groups for both cortical groups. These alterations in spinophilin and calcyon mRNA levels in schizophrenic prefrontal and cingulate cortex provide further evidence of altered dopaminergic neurotransmission in this illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.