The EP300 protein is a histone acetyltransferase that regulates transcription via chromatin remodelling and is important in the processes of cell proliferation and differentiation. EP300 acetylation of TP53 in response to DNA damage regulates its DNA-binding and transcription functions. A role for EP300 in cancer has been implied by the fact that it is targeted by viral oncoproteins, it is fused to MLL in Leukaemia and two missense sequence alterations in EP300 were identified in epithelial malignancies. Nevertheless, direct demonstration of the role of EP300 in tumorigenesis by inactivating mutations in human cancers has been lacking. Here we describe EP300 mutations, which predict a truncated protein, in 6(3%) of 193 epithelial cancers analysed. Of these six mutations, two were in primary tumours (a colorectal cancer and a breast cancer) and four were in cancer cell lines (colorectal, breast and pancreatic). In addition, we identified a somatic in-frame insertion in a primary breast cancer and missense alterations in a primary colorectal cancer and two cell lines (breast and pancreatic). Inactivation of the second allele was demonstrated in five of six cases with truncating mutations and in two other cases. Our data show that EP300 is mutated in epithelial cancers and provide the first evidence that it behaves as a classical tumour-suppressor gene.
The natural steroids estradiol-17beta (E2) and estrone (E1) and the synthetic steroid ethynylestradiol-17alpha (EE2) have frequently been measured in waters receiving domestic effluents. All of these steroids bind to the estrogen receptor(s) and have been shown to elicit a range of estrogenic responses in fish at environmentally relevant concentrations. At present, however, no relative potency estimates have been derived for either the individual steroidal estrogens or their mixtures in vivo. In this study the estrogenic activity of E2, E1, and EE2, and the combination effects of a mixture of E2 and EE2 (equi-potent fixed-ratio mixture), were assessed using vitellogenin induction in a 14-day in vivo juvenile rainbow trout screening assay. Median effective concentrations, relative to E2, for induction of vitellogenin were determined from the concentration-response curves and the relative estrogenic potencies of each of the test chemicals calculated. Median effective concentrations were between 19 and 26 ng L(-1) for E2, 60 ng L(-1) for E1, and between 0.95 and 1.8 ng L(-1) for EE2, implying that EE2 was approximately 11 to 27 times more potent than E2, while E2 was 2.3 to 3.2 times more potent than E1. The median effective concentration, relative to E2, for the binary mixture of E2 and EE2 was 15 ng L(-1) (comprising 14.4 ng L(-1) E2 and 0.6 ng L(-1) EE2). Using the model of concentration addition it was shown that this activity of the binary mixture could be predicted from the activity of the individual chemicals. The ability of each individual steroid to contribute to the overall effect of a mixture, even at individual no-effect concentrations, combined with the high estrogenic potency of the steroids, particularly the synthetic steroid EE2, emphasizes the need to consider the total estrogenic load of these chemicals in our waterways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.