Background: Vertebral deconditioning is commonly experienced after space flight and simulation studies. Disc herniation is quadrupled after space flight.Purpose: The main hypothesis formulated by the authors is that microgravity results in intervertebral disc (IVD) swelling.Study Design: The aim of the study was to identify the morphological changes of the spine and their clinical consequences after simulated microgravity by 3-day dry immersion (DI). The experimental protocol was performed on 12 male volunteers using magnetic resonance imaging and spectroscopy before and after DI.Methods: All the experiment was financially supported by CNES (Centre national d'études spatiales i.e., French Space Agency).Results: We observed an increase in spine height of 1.5 ± 0.4 cm and a decrease in curvature, particularly for the lumbar region with a decrease of −4 ± 2.5°. We found a significant increase in IVD volume of +8 ± 9% at T12-L1 and +11 ± 9% at L5-S1. This phenomenon is likely associated with the increase in disc intervertebral water content (IWC), 17 ± 27%. During the 3 days in DI, 92% of the subjects developed back pain in the lumbar region below the diaphragmatic muscle. This clinical observation may be linked to the morphological changes of the spine.Conclusions: The morphological changes observed and, specifically, the disc swelling caused by increased IWC may contribute to understanding disc herniation after microgravity exposure. Our results confirmed the efficiency of the 3-day DI model to reproduce quickly the effects of microgravity on spine morphology. Our findings raise the question of the subject selection in spatial studies, especially studies about spine morphology and reconditioning programs after space flight. These results may contribute to a better understanding of the mechanisms underlying disc herniation and may serve as the basis to develop countermeasures for astronauts and to prevent IVD herniation and back pain on Earth.
Most astronauts experience back pain after spaceflight, primarily located in the lumbar region. Intervertebral disc herniations have been observed after real and simulated microgravity. Spinal deconditioning after exposure to microgravity has been described, but the underlying mechanisms are not well understood. The dry immersion (DI) model of microgravity was used with eighteen male volunteers. Half of the participants wore thigh cuffs as a potential countermeasure. The spinal changes and intervertebral disc (IVD) content changes were investigated using magnetic resonance imaging (MRI) analyses with T1-T2 mapping sequences. IVD water content was estimated by the apparent diffusion coefficient (ADC), with proteoglycan content measured using MRI T1-mapping sequences centered in the nucleus pulposus. The use of thigh cuffs had no effect on any of the spinal variables measured. There was significant spinal lengthening for all of the subjects. The ADC and IVD proteoglycan content both increased significantly with DI (7.34 ± 2.23% and 10.09 ± 1.39%, respectively; mean ± standard deviation), p < 0.05). The ADC changes suggest dynamic and rapid water diffusion inside IVDs, linked to gravitational unloading. Further investigation is needed to determine whether similar changes occur in the cervical IVDs. A better understanding of the mechanisms involved in spinal deconditioning with spaceflight would assist in the development of alternative countermeasures to prevent IVD herniation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.