The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The threedimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM. 4 5
At Sandia National Laboratories, miniaturization dominates future hardware designs, and technologies that address the manufacture of micro-scale to nano-scale features are in demand. Currently, Sandia is developing technologies such as photolithography/etching (e.g. silicon MEMS), LIGA, micro-electro-discharge machining (micro-EDM), and focused ion beam (FIB) machining to fulfill some of the component design requirements. Some processes are more encompassing than others, but each process has its niche, where all performance characteristics cannot be met by one technology. For example, micro-EDM creates highly accurate micro-scale features but the choice of materials is limited to conductive materials. With silicon-based MEMS technology, highly accurate nano-scale integrated devices are fabricated but the mechanical performance may not meet the requirements. Femtosecond laser processing has the potential to fulfill a broad range of design demands, both in terms of feature resolution and material choices, thereby improving fabrication of micro-components.One of the unique features of femtosecond lasers is the ability to ablate nearly all materials with little heat transfer, and therefore melting or damage, to the surrounding material, resulting in highly accurate micro-scale features. Another unique aspect to femtosecond radiation is the ability to create localized structural changes thought nonlinear absorption processes. By scanning the focal point within transparent material, we can create three-dimensional waveguides for biological sensors and optical components.In this report, we utilized the special characteristics of femtosecond laser processing for microfabrication. Special emphasis was placed on the laser-material interactions to gain a science-based understanding of the process and to determine the process parameter space for laser processing of metals and glasses. Two areas were investigated, including laser ablation of ferrous alloys and direct-write optical waveguides and integrated optics in bulk glass. The effects of laser and environmental parameters on such aspects as removal rate, feature size, feature definition, and ablation angle during the ablation process of metals were studied. In addition, the manufacturing requirements for component fabrication including precision and reproducibility were investigated. The effect of laser processing conditions on the optical properties of direct-4 written waveguides and an unusual laser-induced birefringence in an optically isotropic glass are reported. Several integrated optical devices, including a Y coupler, directional coupler, and Mach-Zehnder interferometer, were made to demonstrate the simplicity and flexibility of this technique in comparison to the conventional waveguide fabrication processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.