Plasma H(2)S levels are reduced in overweight participants and patients with type 2 diabetes. Increasing adiposity is a major determinant of plasma H(2)S levels.
This Tutorial is an introduction to statistical design of experiments (DOE) with focus on demonstration of how DOE can be useful to the mass spectrometrist. In contrast with the commonly used one factor at a time approach, DOE methods address the issue of interaction of variables and are generally more efficient. The complex problem of optimizing data-dependent acquisition parameters in a bottom-up proteomics LC-MS/MS analysis is used as an example of the power of the technique. Using DOE, a new data-dependent method was developed that improved the quantity of confidently identified peptides from rat serum.
Blood concentrations of hydrogen sulfide (H(2)S) are markedly elevated in several animal models of inflammation. Pharmacological inhibition of H(2)S synthesis reduces inflammation and swelling, suggesting that H(2)S is a potential inflammatory mediator. However, it is currently unknown whether H(2)S synthesis is perturbed in human inflammatory conditions or whether H(2)S is present in synovial fluid. We analyzed paired plasma and synovial fluid (SF) aspirates from rheumatoid arthritis (RA; n= 20) and osteoarthritis (OA; n= 4) patients and plasma from age matched healthy volunteers (n= 20). Median plasma H(2)S concentrations from healthy volunteers and RA and OA patients were 37.6, 36.6, and 37.6 microM, respectively. In RA patients, median synovial fluid H(2)S levels (62.4 microM) were significantly higher than paired plasma (P= 0.002) and significantly higher than in synovial fluid from OA patients (25.1 microM; P= 0.009). SF H(2)S levels correlated with clinical indices of disease activity (tender joint count, r= 0.651; P < 0.05) and markers of chronic inflammation; Europhile count (r=-0.566; P < 0.01) and total white cell count (r=-0.703; P < 0.01). Our study shows for the first time that H(2)S is present in synovial fluid and levels correlated with inflammatory and clinical indices in RA patients.
Background: Maximum skin hyperaemia (MH) induced by heating skin to ≧42°C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. Methods: MH was achieved by local heating of skin to 42–43°C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). Results: MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. Conclusion: NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.