Clinical evidence shows that tumor hypoxia is an independent prognostic indicator of poor patient outcome. Hypoxic tumors have altered physiologic processes, including increased regions of angiogenesis, increased local invasion, increased distant metastasis and altered apoptotic programs. Since hypoxia is a potent controller of gene expression, identifying hypoxia-regulated genes is a means to investigate the molecular response to hypoxic stress. Traditional experimental approaches have identified physiologic changes in hypoxic cells. Recent studies have identified hypoxia-responsive genes that may define the mechanism(s) underlying these physiologic changes. For example, the regulation of glycolytic genes by hypoxia can explain some characteristics of the Warburg effect. The converse of this logic is also true. By identifying new classes of hypoxia-regulated gene(s), we can infer the physiologic pressures that require the induction of these genes and their protein products. Furthermore, these physiologically driven hypoxic gene expression changes give us insight as to the poor outcome of patients with hypoxic tumors. Approximately 1-1.5% of the genome is transcriptionally responsive to hypoxia. However, there is significant heterogeneity in the transcriptional response to hypoxia between different cell types. Moreover, the coordinated change in the expression of families of genes supports the model of physiologic pressure leading to expression changes. Understanding the evolutionary pressure to develop a 'hypoxic response' provides a framework to investigate the biology of the hypoxic tumor microenvironment.
A common V(D)J recombinase that recognizes a conserved recombination signal sequence (RSS) mediates the assembly of immunoglobulin (Ig) and T cell receptor (TCR) genes in B and T cell precursors. The rearrangement of particular Ig and TCR gene segments, however, is tightly regulated with respect to cell lineage and developmental stage. Using an in vitro system, we analyzed recombinase cleavage of RSSs flanking Ig and TCR gene segments in nuclei. We found that both the lineage-specificity and temporal ordering of gene rearrangement is reflected in the accessibility of RSSs within chromatin to in vitro cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.