Application of the GCE in this experimental stroke model to retrieve typically recalcitrant fibrin rich clots resulted in higher successful recanalization rates than the SR.
Following new trends in precision medicine, Juxatarenal Abdominal Aortic Aneurysm (JAAA) treatment has been enabled by using patient-specific fenestrated endovascular grafts. The X-ray guided procedure requires precise orientation of multiple modular endografts within the arteries confirmed via radiopaque markers. Patient-specific 3D printed phantoms could familiarize physicians with complex procedures and new devices in a risk-free simulation environment to avoid periprocedural complications and improve training. Using the Vascular Modeling Toolkit (VMTK), 3D Data from a CTA imaging of a patient scheduled for Fenestrated EndoVascular Aortic Repair (FEVAR) was segmented to isolate the aortic lumen, thrombus, and calcifications. A stereolithographic mesh (STL) was generated and then modified in Autodesk MeshMixer for fabrication via a Stratasys Eden 260 printer in a flexible photopolymer to simulate arterial compliance. Fluoroscopic guided simulation of the patient-specific FEVAR procedure was performed by interventionists using all demonstration endografts and accessory devices. Analysis compared treatment strategy between the planned procedure, the simulation procedure, and the patient procedure using a derived scoring scheme.
Results
With training on the patient-specific 3D printed AAA phantom, the clinical team optimized their procedural strategy. Anatomical landmarks and all devices were visible under x-ray during the simulation mimicking the clinical environment. The actual patient procedure went without complications.
Conclusions
With advances in 3D printing, fabrication of patient specific AAA phantoms is possible. Simulation with 3D printed phantoms shows potential to inform clinical interventional procedures in addition to CTA diagnostic imaging.
3D printing an anatomically accurate, functional flow loop phantom of a patient’s cardiac vasculature was used to assist in the surgical planning of one of the first native transcatheter mitral valve replacement (TMVR) procedures. CTA scans were acquired from a patient about to undergo the first minimally-invasive native TMVR procedure at the Gates Vascular Institute in Buffalo, NY. A python scripting library, the Vascular Modeling Toolkit (VMTK), was used to segment the 3D geometry of the patient’s cardiac chambers and mitral valve with severe stenosis, calcific in nature. A stereolithographic (STL) mesh was generated and AutoDesk Meshmixer was used to transform the vascular surface into a functioning closed flow loop. A Stratasys Objet 500 Connex3 multi-material printer was used to fabricate the phantom with distinguishable material features of the vasculature and calcified valve. The interventional team performed a mock procedure on the phantom, embedding valve cages in the model and imaging the phantom with a Toshiba Infinix INFX-8000V 5-axis C-arm bi-Plane angiography system.
Results
After performing the mock-procedure on the cardiac phantom, the cardiologists optimized their transapical surgical approach. The mitral valve stenosis and calcification were clearly visible. The phantom was used to inform the sizing of the valve to be implanted.
Conclusion
With advances in image processing and 3D printing technology, it is possible to create realistic patient-specific phantoms which can act as a guide for the interventional team. Using 3D printed phantoms as a valve sizing method shows potential as a more informative technique than typical CTA reconstruction alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.