Rationale:
The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis.
Objectives:
To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects.
Methods:
We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using
in situ
RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects.
Measurements and Main Results:
We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data.
Conclusions:
We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Misharin et al. elucidate the fate and function of monocyte-derived alveolar macrophages during the course of pulmonary fibrosis. These cells persisted throughout the life span, were enriched for the expression of profibrotic genes, and their genetic ablation ameliorated development of pulmonary fibrosis.
The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy. @ERSpublications We discuss novel aspects of virus-and immune-mediated lung injury and repair after influenza infection
Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodeling, and fibrosis) are attenuated in the lungs of Vim-/- mice challenged with LPS, bleomycin, and asbestos. Bone marrow chimeric mice lacking vimentin have reduced IL-1β levels and attenuated lung injury and fibrosis following bleomycin exposure. Furthermore, decreased active caspase-1 and IL-1β levels are observed in vitro in Vim-/- and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests vimentin may be a key regulator of the NLRP3 inflammasome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.