PurposeClassification of pediatric brain tumors from 1H‐magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tumor types.MethodsSingle‐voxel, Short echo time MRS data were collected from 90 patients with pilocytic astrocytoma (n = 42), medulloblastoma (n = 38), or ependymoma (n = 10). Both spectra and metabolite profiles were used to develop the learning algorithms. The borderline synthetic minority oversampling technique and AdaboostM1 were used to correct for the skewed distribution. Classifiers were trained using five different pattern recognition algorithms.ResultsUse of imbalanced learning techniques improved the balanced accuracy rate (BAR) of all classification methods (average BAR over all classification methods for spectra: oversampled data = 0.81, original = 0.63, P < 0.001; metabolite concentration: oversampled‐data = 0.91, original = 0.75, P < 0.0001). Performance of all classifiers in discriminating ependymomas increased when oversampled data were used compared with original data for both complete spectra (F‐measure P < 0.01) and metabolite profile (F‐measure P < 0.001).ConclusionImbalanced learning techniques improve the classification accuracy of childhood brain tumors from MRS where group sizes differ and facilitate the inclusion of rarer tumor types into clinical decision support systems. Magn Reson Med 77:2114–2124, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
BackgroundPediatric retroperitoneal tumors in the renal bed are often large and heterogeneous, and their diagnosis based on conventional imaging alone is not possible. More advanced imaging methods, such as diffusion‐weighted (DW) MRI and the use of intravoxel incoherent motion (IVIM), have the potential to provide additional biomarkers that could facilitate their noninvasive diagnosis.PurposeTo assess the use of an IVIM model for diagnosis of childhood malignant abdominal tumors and discrimination of benign from malignant lesions.Study TypeRetrospective.PopulationForty‐two pediatric patients with abdominal lesions (n = 32 malignant, n = 10 benign), verified by histopathology.Field Strength/Sequence1.5T MRI system and a DW‐MRI sequence with six b‐values (0, 50, 100, 150, 600, 1000 s/mm2).AssessmentParameter maps of apparent diffusion coefficient (ADC), and IVIM maps of slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion fraction (f) were computed using a segmented fitting model. Histograms were constructed for whole‐tumor regions of each parameter.Statistical TestsComparison of histogram parameters of and their diagnostic performance was determined using Kruskal–Wallis, Mann–Whitney U, and receiver‐operating characteristic (ROC) analysis.ResultsIVIM parameters D* and f were significantly higher in neuroblastoma compared to Wilms' tumors (P < 0.05). The ROC analysis showed that the best diagnostic performance was achieved with D* 90th percentile (area under the curve [AUC] = 0.935; P = 0.002; cutoff value = 32,376 × 10−6 mm2/s) and f mean values (AUC = 1.00; P < 0.001; cutoff value = 14.7) in discriminating between neuroblastoma (n = 11) and Wilms' tumors (n = 8). Discrimination between tumor types was not possible with IVIM D or ADC parameters. Malignant tumors revealed significantly lower ADC, D, and higher D* values than in benign lesions (all P < 0.05).Data ConclusionIVIM perfusion parameters could distinguish between malignant childhood tumor types, providing potential imaging biomarkers for their diagnosis. Level of Evidence: 4 Technical Efficacy: Stage 2J. Magn. Reson. Imaging 2018;47:1475–1486.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.