Retrotransposons are present in high copy number in many plant genomes. They show a considerable degree of sequence heterogeneity and insertional polymorphism, both within and between species. We describe here a polymerase chain reaction (PCR)-based method which exploits this polymorphism for the generation of molecular markers in barley. The method produces amplified fragments containing a Bare-1-like retrotransposon long terminal repeat (LTR) sequence at one end and a flanking host restriction site at the other. The level of polymorphism is higher than that revealed by amplified fragment length polymorphism (AFLP) in barley. Segregation data for 55 fragments, which were polymorphic in a doubled haploid barley population, were analysed alongside an existing framework of some 400 other markers. The markers showed a widespread distribution over the seven linkage groups, which is consistent with the distribution of the Bare-1 class of retrotransposons in the barley genome based on in situ hybridisation data. The potential applicability of this method to the mapping of other multicopy sequences in plants is discussed.
The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”.
The cultivated potato, Solanum tuberosum, ultimately traces its origin to Andean and Chilean landraces developed by pre-Colombian cultivators. These Andean landraces exhibit tremendous morphological and genetic diversity, and are distributed throughout the Andes, from western Venezuela to northern Argentina, and in southern Chile. The wild species progenitors of these landraces have long been in dispute, but all hypotheses center on a group of Ϸ20 morphologically very similar tuber-bearing (Solanum section Petota) wild taxa referred to as the S. brevicaule complex, distributed from central Peru to northern Argentina. We present phylogenetic analyses based on the representative cladistic diversity of 362 individual wild (261) and landrace (98) members of potato (all tuber-bearing) and three outgroup non-tuber-bearing members of Solanum section Etuberosum, genotyped with 438 robust amplified fragment length polymorphisms. Our analyses are consistent with a hypothesis of a ''northern'' (Peru) and ''southern'' (Bolivia and Argentina) cladistic split for members of the S. brevicaule complex, and with the need for considerable reduction of species in the complex. In contrast to all prior hypotheses, our data support a monophyletic origin of the landrace cultivars from the northern component of this complex in Peru, rather than from multiple independent origins from various northern and southern members.evolution ͉ sect. Petota ͉ Solanum
New sequencing and genotyping technologies have enabled researchers to generate high density SNP genotype data for mapping populations. In polyploid species, SNP data usually contain a new type of information, the allele dosage, which is not used by current methodologies for linkage analysis and QTL mapping. Here we extend existing methodology to use dosage data on SNPs in an autotetraploid mapping population. The SNP dosages are inferred from allele intensity ratios using normal mixture models. The steps of the linkage analysis (testing for distorted segregation, clustering SNPs, calculation of recombination fractions and LOD scores, ordering of SNPs and inference of parental phase) are extended to use the dosage information. For QTL analysis, the probability of each possible offspring genotype is inferred at a grid of locations along the chromosome from the ordered parental genotypes and phases and the offspring dosages. A normal mixture model is then used to relate trait values to the offspring genotypes and to identify the most likely locations for QTLs. These methods are applied to analyse a tetraploid potato mapping population of parents and 190 offspring, genotyped using an Infinium 8300 Potato SNP Array. Linkage maps for each of the 12 chromosomes are constructed. The allele intensity ratios are mapped as quantitative traits to check that their position and phase agrees with that of the corresponding SNP. This analysis confirms most SNP positions, and eliminates some problem SNPs to give high-density maps for each chromosome, with between 74 and 152 SNPs mapped and between 100 and 300 further SNPs allocated to approximate bins. Low numbers of double reduction products were detected. Overall 3839 of the 5378 polymorphic SNPs can be assigned putative genetic locations. This methodology can be applied to construct high-density linkage maps in any autotetraploid species, and could also be extended to higher autopolyploids.
Key message Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Abstract Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical-or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.