Reliable and accurate distribution system modeling, including the secondary network, is essential in examining distribution system performance with high penetration of distributed energy resources (DERs). This paper presents a highly automated, novel method to enhance the accuracy of utility distribution feeder models to capture their performance by matching simulation results with corresponding field measurements. The method is demonstrated using an actual feeder from an electrical utility with high penetration of DERs. The method proposed uses advanced metering infrastructure (AMI) voltage and derived active power measurements at the customer level, and data acquisition systems (DAS) measurements at the feeder-head, in conjunction with an AC optimal power flow (ACOPF) to estimate customer active and reactive power consumption over a time horizon, while accounting for unmetered loads. The ACOPF uses the measured voltage magnitudes, derived active power measurements, and the feeder head measurements to obtain a complete active power and reactive power capture of the feeder loads. Additionally, the method proposed estimates both voltage magnitude and angle for each phase at the unbalanced distribution substation. The accuracy of the method developed is verified in two stages: by comparing the time-series power flow results obtained from the enhancement algorithm with OpenDSS results and with the field measurements available. The proposed approach seamlessly manages the data available from the optimization procedure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.