Recent studies show a differential switch-related positivity emerging before a switch trial and reflecting anticipatory task-set reconfiguration processes. In this study, the switch-related positivity was examined in a cued task-switching paradigm. Cue-stimulus and response-stimulus intervals were independently manipulated to dissociate between the effects of anticipatory preparation and passive dissipation of task-set interference. Reaction time switch cost declined with increasing cue-stimulus and response-stimulus intervals, suggesting a contribution from both active preparation and passive interference processes. In cue-related difference waveforms, a switch positivity peaked around 350-400 ms and is interpreted as reflecting differential activation of task-set reconfiguration. In stimulus-related difference waveforms, a switch-related negativity is believed to indicate the role of S-R priming and response interference in taskswitching.
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes – such as post-fire forest succession – and land management decisions. The present paper reviews past assessments and the studies presented in this special issue that have largely been based on the Composite Burn Index and differenced Normalized Burn Ratio (dNBR). Results from relating and mapping fire/burn severity within the boreal region have been variable, and are likely attributed, in part, to the wide variability in vegetation and terrain conditions that are characteristic of the region. Satellite remote sensing of post-fire effects alone without proper field calibration should be avoided. A sampling approach combining field and image values of burn condition is necessary for successful mapping of fire/burn severity. Satellite-based assessments of fire/burn severity, and in particular dNBR and related indices, need to be used judiciously and assessed for appropriateness based on the users’ need. Issues unique to high latitudes also need to be considered when using satellite-derived information in the boreal forest region.
Four ruthenium nitrosyls, namely [(bpb)Ru(NO)(Cl)] (1), [(Me(2)bpb)Ru(NO)(Cl)] (2), [(Me(2)bpb)Ru(NO)(py)](BF(4)) (3), and [(Me(2)bqb)Ru(NO)(Cl)] (4) (H(2)bpb = 1,2-bis(pyridine-2-carboxamido)benzene, H(2)Me(2)bpb = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethylbenzene, H(2)Me(2)bqb = 1,2-bis(quinaldine-2-carboxamido)-4,5-dimethylbenzene; H is the dissociable amide proton), have been synthesized and characterized by spectroscopy and X-ray diffraction analysis. All four complexes exhibit nu(NO) in the range 1830-1870 cm(-)(1) indicating the [Ru-NO](6) configuration. Clean (1)H NMR spectra in CD(3)CN (or (CD(3))(2)SO) confirm the S = 0 ground state for all four complexes. Although the complexes are thermally stable, they release NO upon illumination. Rapid NO dissociation occurs when solutions of 1-3 in acetonitrile (MeCN) or DMF are exposed to low-intensity (7 mW) UV light (lambda(max) = 302 nm). Electron paramagnetic resonance (EPR) spectra of the photolyzed solutions display anisotropic signals at g approximately 2.00 that confirm the formation of solvated low-spin Ru(III) species upon NO release. The ligand trans to bound NO namely, anionic Cl(-) and neutral pyridine, has significant effect on the electronic and NO releasing properties of these complexes. Change in the in-plane ligand strength also has effects on the rate of NO release. The absorption maximum (lambda(max)) of 4 is significantly red shifted (455 nm in DMF) compared to the lambda(max) values of 1-3 (380-395 nm in DMF) due to the extension of conjugation on the in-plane ligand frame. As a consequence, 4 is also sensitive to visible light and release NO (albeit at a slower rate) upon illumination to low-intensity visible light (lambda > 465 nm). Collectively, the photosensitivity of the present series of ruthenium nitrosyls demonstrates that the extent of NO release and their wavelength dependence can be modulated by changes of either the in-plane or the axial ligand (trans to bound NO) field strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.