LCoR (ligand-dependent corepressor) is a transcriptional corepressor widely expressed in fetal and adult tissues that is recruited to agonist-bound nuclear receptors through a single LXXLL motif. LCoR binding to estrogen receptor alpha depends in part on residues in the coactivator binding pocket distinct from those bound by TIF-2. Repression by LCoR is abolished by histone deacetylase inhibitor trichostatin A in a receptor-dependent fashion, indicating HDAC-dependent and -independent modes of action. LCoR binds directly to specific HDACs in vitro and in vivo. Moreover, LCoR functions by recruiting C-terminal binding protein corepressors through two consensus binding motifs and colocalizes with CtBPs in the nucleus. LCoR represents a class of corepressor that attenuates agonist-activated nuclear receptor signaling by multiple mechanisms.
Knowledge of altered maternal nutrition effects on growth-regulating systems is critical to understanding normal and abnormal fetal development. There are many reports of hepatic fetal IGF system responses to maternal nutrient restriction (MNR) during pregnancy in rodents and sheep but none in nonhuman primates. We determined effects of MNR on the fetal baboon hepatic IGF system. Social groups of female baboons were fed ad libitum, controls, or 70% controls (MNR) from 0.16 to 0.5 gestation and fetuses delivered by cesarean section. Fetal liver tissue was analyzed for IGF-I, IGF-II, and IGF binding protein (IGFBP)-3 mRNA by in situ hybridization and quantitative RT-PCR and protein by immunohistochemistry (IHC); IGF-I receptor, IGF-II receptor by quantitative RT-PCR and IHC and IGFBP-1 by in situ hybridization and IHC. MNR did not alter fetal body or liver weight. Fetal hepatic glycogen staining increased with MNR. MNR reduced fetal hepatic IGF-I and IGF-II and increased IGFBP-1 mRNA and decreased IGF-I, IGF-II, IGF-I receptor, and IGF-II receptor protein and increased protein for IGFBP-1 and IGFBP-3. MNR increased caspase-3, indicating apoptosis and decreased Akt staining, indicating decreased nutrient sensing. In conclusion, whereas fetal body and liver weights did not change in response to moderate MNR during the first half of baboon pregnancy, the major indices of function of the hepatic IGF system measured were all reduced.
Hypertrophic scarring is characterized by the excessive development and persistence of myofibroblasts. These cells contract the surrounding extracellular matrix resulting in the increased tissue density characteristic of scar tissue. Periostin is a matricellular protein that is abnormally abundant in fibrotic dermis, however, its roles in hypertrophic scarring are largely unknown. In this report, we assessed the ability of matrix-associated periostin to promote the proliferation and myofibroblast differentiation of dermal fibroblasts isolated from the dermis of hypertrophic scars or healthy skin. Supplementation of a thin type-I collagen cell culture substrate with recombinant periostin induced a significant increase in the proliferation of hypertrophic scar fibroblasts but not normal dermal fibroblasts. Periostin induced significant increases in supermature focal adhesion formation, α smooth muscle actin levels and collagen contraction in fibroblasts cultured from hypertrophic scars under conditions of increased matrix tension in three-dimensional type-I collagen lattices. Inhibition of Rho-associated protein kinase activity significantly attenuated the effects of matrix-associated periostin on hypertrophic scar fibroblasts and myofibroblasts. Depletion of endogenous periostin expression in hypertrophic scar myofibroblasts resulted in a sustained decrease in α smooth muscle actin levels under conditions of reducing matrix tension, while matrix-associated periostin levels caused the cells to retain high levels of a smooth muscle actin under these conditions. These findings indicate that periostin promotes Rho-associated protein kinase-dependent proliferation and myofibroblast persistence of hypertrophic scar fibroblasts and implicate periostin as a potential therapeutic target to enhance the resolution of scars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.