The H-reflex habituates at relatively low frequency (10 Hz) stimulation in the intact spinal cord, but loss of descending inhibition resulting from spinal cord transection reduces this habituation. There is a return towards a normal pattern of low-frequency habituation in the reflex activity with cycling exercise of the affected hind limbs. This implies that repetitive passive stretching of the muscles in spinalized animals and the accompanying stimulation of large (Group I and II) proprioceptive fibers has modulatory effects on spinal cord reflexes after injury. To test this hypothesis, we induced pyridoxine neurotoxicity that preferentially affects large dorsal root ganglia neurons in intact and spinalized rats. Pyridoxine or saline injections were given twice daily (IP) for 6 weeks and half of the spinalized animals were subjected to cycling exercise during that period. After 6 weeks, the tibial nerve was stimulated electrically and recordings of M and H waves were made from interosseous muscles of the hind paw. Results show that pyridoxine treatment completely eliminated the H-reflex in spinal intact animals. In contrast, transection paired with pyridoxine treatment resulted in a reduction of the frequency-dependent habituation of the H-reflex that was not affected by exercise. These results indicate that normal Group I and II afferent input is critical to achieve exercise-based reversal of hyper-reflexia of the H-reflex after spinal cord injury.
Background Transplants of cellular grafts expressing a combination of two neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods Rat fibroblasts secreting one of the two neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post transection/grafting. Results Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed.
AuYong N, Ollivier-Lanvin K, Lemay MA. Preferred locomotor phase of activity of lumbar interneurons during air-stepping in subchronic spinal cats. J Neurophysiol 105: 1011-1022, 2011. First published November 17, 2010 doi:10.1152/jn.00523.2010.-Spinal locomotor circuits are intrinsically capable of driving a variety of behaviors such as stepping, scratching, and swimming. Based on an observed rostrocaudal wave of activity in the motoneuronal firing during locomotor tasks, the traveling-wave hypothesis proposes that spinal interneuronal firing follows a similar rostrocaudal pattern of activation, suggesting the presence of spatially organized interneuronal modules within the spinal motor system. In this study, we examined if the spatial organization of the lumbar interneuronal activity patterns during locomotor activity in the adult mammalian spinal cord was consistent with a traveling-wave organizational scheme. The activity of spinal interneurons within the lumbar intermediate zone was examined during air-stepping in subchronic spinal cats. The preferred phase of interneuronal activity during a step cycle was determined using circular statistics. We found that the preferred phases of lumbar interneurons from both sides of the cord were evenly distributed over the entire step cycle with no indication of functional groupings. However, when units were subcategorized according to spinal hemicords, the preferred phases of units on each side largely fell around the period of extensor muscle activity on each side. In addition, there was no correlation between the preferred phases of units and their rostrocaudal locations along the spinal cord with preferred phases corresponding to both flexion and extension phases of the step cycle found at every rostrocaudal level of the cord. These results are consistent with the hypothesis that interneurons operate as part of a longitudinally distributed network rather than a rostrocaudally organized traveling-wave network. modularity; traveling wave; spinal cord injury; motor primitives; central pattern generator THE SPINAL CIRCUITRY IS INTRINSICALLY capable of driving a variety of locomotor behaviors (Grillner 1981;Rossignol 1996), but information regarding the population activation dynamics of its interneuronal constituents and their overall organization remains sparse, especially in the adult cord. Of interest is how networks of spinal interneurons coordinate and govern the many facets of locomotion (flexor-extensor alternation, interlimb coordination, etc.) and the shaping of pat- It also remains to be determined if the spinal locomotor network's topology leads to a spatial organization of interneuronal activity dynamics. Tresch and Kiehn (1999) have reported that segmental interneuronal population activity in the isolated neonatal rat spinal cord occurs in phase with the corresponding ventral root activity, suggesting that interneurons are arranged in close proximity to their target motorpools. More recently, Cuellar and colleagues (2009) have presented evidence showing that...
The lumbar spinal cord circuitry can autonomously generate locomotion, but it remains to be determined which types of neurons constitute the locomotor generator and how their population activity is organized spatially in the mammalian spinal cord. In this study, we investigated the spatiotemporal dynamics of the spinal interneuronal population activity in the intermediate zone of the adult mammalian cord. Segmental interneuronal population activity was examined via multiunit activity (MUA) during air-stepping initiated by perineal stimulation in subchronic spinal cats. In contrast to single-unit activity, MUA provides a continuous measure of neuronal activity within a ∼100-μm volume around the recording electrode. MUA was recorded during air-stepping, along with hindlimb muscle activity, from segments L3 to L7 with two multichannel electrode arrays placed into the left and right hemicord intermediate zones (lamina V-VII). The phasic modulation and spatial organization of MUA dynamics were examined in relation to the locomotor cycle. Our results show that segmental population activity is modulated with respect to the ipsilateral step cycle during air-stepping, with maximal activity occurring near the ipsilateral swing to stance transition period. The phase difference between the population activity within the left and right hemicords was also found to correlate to the left-right alternation of the step cycle. Furthermore, examination of MUA throughout the rostrocaudal extent showed no differences in population dynamics between segmental levels, suggesting that the spinal interneurons targeted in this study may operate as part of a distributed "clock" mechanism rather than a rostrocaudal oscillation as seen with motoneuronal activity.
Current evidence suggests that significant morphological changes occur in nerve-muscle connections caudal to spinal cord injury (SCI). To determine whether neuromuscular junction (NMJ) function is compromised after SCI, we investigated the contribution of NMJ failure to hindlimb muscle fatigue in control and spinalized adult rats. Repetitive supramaximal nerve stimulation was applied to two muscle-nerve preparations: medial gastrocnemius (MG)-tibial and tibialis anterior (TA)-peroneal. NMJ transmission failure was evident in control and SCI animals after repetitive stimulation. At 2 wk post-SCI, NMJ transmission failure was greater in SCI animals compared with controls, but the difference was not significant (P = 0.205 for the MG and P = 0.053 for the TA). At 6 wk post-SCI, there was a significant but small difference in NMJ transmission failure for the TA between control and spinal animals. These results demonstrate that, although there may be a mild decrement in NMJ function, NMJ transmission remains largely intact for supramaximal nerve stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.