BackgroundThe introduction of low cost optical 3D motion tracking sensors provides new options for effective quantification of motor dysfunction.ObjectiveThe present study aimed to evaluate the Kinect V2 sensor against a gold standard motion capture system with respect to accuracy of tracked landmark movements and accuracy and repeatability of derived clinical parameters.MethodsNineteen healthy subjects were concurrently recorded with a Kinect V2 sensor and an optical motion tracking system (Vicon). Six different movement tasks were recorded with 3D full-body kinematics from both systems. Tasks included walking in different conditions, balance and adaptive postural control. After temporal and spatial alignment, agreement of movements signals was described by Pearson’s correlation coefficient and signal to noise ratios per dimension. From these movement signals, 45 clinical parameters were calculated, including ranges of motions, torso sway, movement velocities and cadence. Accuracy of parameters was described as absolute agreement, consistency agreement and limits of agreement. Intra-session reliability of 3 to 5 measurement repetitions was described as repeatability coefficient and standard error of measurement for each system.ResultsAccuracy of Kinect V2 landmark movements was moderate to excellent and depended on movement dimension, landmark location and performed task. Signal to noise ratio provided information about Kinect V2 landmark stability and indicated larger noise behaviour in feet and ankles. Most of the derived clinical parameters showed good to excellent absolute agreement (30 parameters showed ICC(3,1) > 0.7) and consistency (38 parameters showed r > 0.7) between both systems.ConclusionGiven that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to established marker- or wearable sensor based system. The Kinect V2 has the potential to be used as a reliable and valid clinical measurement tool.
BackgroundWe investigated the applicability and feasibility of perceptive computing assisted gait analysis in multiple sclerosis (MS) patients using Microsoft Kinect™. To detect the maximum walking speed and the degree of spatial sway, we established a computerized and observer-independent measure, which we named Short Maximum Speed Walk (SMSW), and compared it to established clinical measures of gait disability in MS, namely the Expanded Disability Status Scale (EDSS) and the Timed 25-Foot Walk (T25FW).MethodsCross-sectional study of 22 MS patients (age mean ± SD 43 ± 9 years, 13 female) and 22 age and gender matched healthy control subjects (HC) (age 37 ± 11 years, 13 female). The disability level of each MS patient was graded using the EDSS (median 3.0, range 0.0-6.0). All subjects then performed the SMSW and the Timed 25-Foot Walk (T25FW). The SMSW comprised five gait parameters, which together assessed average walking speed and gait stability in different dimensions (left/right, up/down and 3D deviation).ResultsSMSW average walking speed was slower in MS patients (1.6 ± 0.3 m/sec) than in HC (1.8 ± 0.4 m/sec) (p = 0.005) and correlated well with EDSS (Spearman’s Rho 0.676, p < 0.001). Furthermore, SMSW revealed higher left/right deviation in MS patients compared to HC. SMSW showed high recognition quality and retest-reliability (covariance 0.13 m/sec, ICC 0.965, p < 0.001). There was a significant correlation between SMSW average walking speed and T25FW (Pearson’s R = -0.447, p = 0.042).ConclusionOur data suggest that ambulation tests using Microsoft Kinect™ are feasible, well tolerated and can detect clinical gait disturbances in patients with MS. The retest-reliability was on par with the T25FW.
Background: Gait variability is an established marker of gait function that can be assessed using sensor-based approaches. In clinical settings, spatial constraints and patient condition impede the execution of longer distance walks for the recording of gait parameters. Turning paradigms are often used to overcome these constraints and commercial gait analysis systems algorithmically exclude turns for gait parameters calculations. We investigated the effect of turns in sensor-based assessment of gait variability.Methods: Continuous recordings from 31 patients with movement disorders (ataxia, essential tremor and Parkinson’s disease) and 162 healthy elderly (HE) performing level walks including 180° turns were obtained using an inertial sensor system. Accuracy of the manufacturer’s algorithm of turn-detection was verified by plotting stride time series. Strides before and after turn events were extracted and compared to respective average of all strides. Coefficient of variation (CoV) of stride length and stride time was calculated for entire set of strides, segments between turns and as cumulative values. Their variance and congruency was used to estimate the number of strides required to reliably assess the magnitude of stride variability.Results: Non-detection of turns in 5.8% of HE lead to falsely increased CoV for these individuals. Even after exclusion of these, strides before/after turns tended to be spatially shorter and temporally longer in all groups, contributing to an increase of CoV at group level and widening of confidence margins with increasing numbers of strides. This could be attenuated by a more generous turn excision as an alternative approach. Correlation analyses revealed excellent consistency for CoVs after at most 20 strides in all groups. Respective stride counts were even lower in patients using a more generous turn excision.Conclusion: Including turns to increase continuous walking distance in spatially confined settings does not necessarily improve the validity and reliability of gait variability measures. Specifically with gait pathology, perturbations of stride characteristics before/after algorithmically excised turns were observed that may increase gait variability with this paradigm. We conclude that shorter distance walks of around 15 strides suffice for reliable and valid recordings of gait variability in the groups studied here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.