Medulloblastomas and supratentorial primitive neuroectodermal tumors are aggressive childhood tumors. We report our findings using array comparative genomic hybridization (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97 Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumors. Array CGH allowed identification and mapping of numerous novel, small regions of copy number change to genomic sequence in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes MYCL1, PDGFRA, KIT, and MYB not previously reported to show amplification in these tumors. In addition, one supratentorial primitive neuroectodermal tumor had lost both copies of the tumor-suppressor genes CDKN2A and CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified 3 distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n = 6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n = 4), and Ch 17: 38425359-39091575 (17q21.31, n = 1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumors, providing further evidence that these tumors are genetically distinct despite their morphologic and behavioral similarities.
Astrocytic, oligodendroglial and mixed gliomas are the commonest gliomas in adults. They have distinct phenotypes and clinical courses, but as they exist as a continuous histological spectrum, differentiating them can be difficult. Co-deletions of total 1p and 19q are found in the majority of oligodendrogliomas and considered as a diagnostic marker and a prognostic indicator. The 1p status of astrocytomas has not yet been thoroughly examined. Using a chromosome 1 tile path array, we investigated 108 adult astrocytic tumours for copy number alterations. Total 1p deletions were rare (2%), however partial deletions involving 1p36 were frequently identified in anaplastic astrocytomas (22%) and glioblastomas (34%). Multivariate analysis showed that patients with total 1p deletions had significantly longer survival (P ¼ 0.005). In nine glioblastomas homozygous deletions at 1p36 were identified. No somatic mutations were found among the five genes located in the homozygously deleted region. However, the CpG island of TNFRSF9 was hypermethylated in 19% of astrocytic tumours and 87% of glioma cell lines. TNFRSF9 expression was upregulated after demethylation of glioma cell lines. Akt3 amplifications were found in four glioblastomas. Our results indicate that 1p deletions are common anaplastic astrocytomas and glioblastomas but are distinct from the 1p abnormalities in oligodendrogliomas.
Histopathologic grading of astrocytic tumors based on current WHO criteria offers a valuable but simplified representation of oncologic reality and is often insufficient to predict clinical outcome. In this study, we report a new astrocytic tumor microarray gene expression data set (n = 65). We have used a simple artificial neural network algorithm to address grading of human astrocytic tumors, derive specific transcriptional signatures from histopathologic subtypes of astrocytic tumors, and asses whether these molecular signatures define survival prognostic subclasses. Fifty-nine classifier genes were identified and found to fall within three distinct functional classes, that is, angiogenesis, cell differentiation, and lower-grade astrocytic tumor discrimination. These gene classes were found to characterize three molecular tumor subtypes denoted ANGIO, INTER, and LOWER. Grading of samples using these subtypes agreed with prior histopathologic grading for both our data set (96.15%) and an independent data set. Six tumors were particularly challenging to diagnose histopathologically. We present an artificial neural network grading for these samples and offer an evidence-based interpretation of grading results using clinical metadata to substantiate findings. The prognostic value of the three identified tumor subtypes was found to outperform histopathologic grading as well as tumor subtypes reported in other studies, indicating a high survival prognostic potential for the 59 gene classifiers. Finally, 11 gene classifiers that differentiate between primary and secondary glioblastomas were also identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.