Since cardiac ultrasound was introduced into medical practice around the middle twentieth century, transthoracic echocardiography has developed to become a highly sophisticated and widely performed cardiac imaging modality in the diagnosis of heart disease1. This evolution from an emerging technique with limited application, into a complex modality capable of detailed cardiac assessment has been driven by technological innovations that have both refined ‘standard’ two dimensional and Doppler imaging and led to the development of new diagnostic techniques. Accordingly, the adult transthoracic echocardiogram has evolved to become a comprehensive assessment of complex cardiac anatomy, function and haemodynamics. This guideline protocol from the British Society of Echocardiography aims to outline the minimum dataset required to confirm normal cardiac structure and function when performing a comprehensive standard adult echocardiogram and is structured according to the recommended sequence of acquisition. It is recommended that this structured approach to image acquisition and measurement protocol forms the basis of every standard adult transthoracic echocardiogram. However, when pathology is detected and further analysis becomes necessary, views and measurements in addition to the minimum dataset are required and should be taken with reference to the appropriate British Society of Echocardiography imaging protocol. It is anticipated that the recommendations made within this guideline will help standardise the local, regional and national practice of echocardiography, in addition to minimising the inter and intra-observer variation associated with echocardiographic measurement and interpretation.
We have genetically replaced the diphtheria toxin receptor binding domain with a synthetic gene encoding interleukin-2 (IL-2) and a translational stop signal. The diphtheria toxin-related T-cell growth factor fusion gene encodes a 70 586-d polypeptide, pro-IL-2-toxin. The mature form of IL-2-toxin has a deduced mol. wt of 68,086 and is shown to be exported to the periplasmic compartment of Escherichia coli (pABI508), and contain immunologic determinants intrinsic to both its diphtheria toxin and IL-2 components. IL-2-toxin has been purified from periplasmic extracts of recombinant strains of E. coli (pABI508) by immunoaffinity chromatography using immobilized anti-IL-2. The purified chimeric toxin is shown to selectively inhibit protein synthesis in IL-2 receptor bearing targeted cells, whereas cell lines which do not express the IL-2 receptor are resistant to IL-2-toxin action.
Neuromuscular electrical stimulation (NMES) can be used to augment range-of-motion, strengthening, and facilitation treatment programs of the muscles surrounding the shoulder. The purposes of this article are 1) to describe the uses of NMES around the shoulder joint as developed through our clinical use and 2) to detail the effects of an NMES program on chronic shoulder subluxation as determined by a clinical study. Because of the complexities of this multiarticular joint, NMES is most useful in the initial phase of the ROM, and stimulated contractions are compromised, relatively, as the humerus moves above the 90-degree horizontal plane. The use of NMES to provide scapular stabilization often entails unwanted alteration of the pressures on the spinal column, occasionally making the treatment program unusable. Electrical stimulation to prevent or correct shoulder subluxation, especially in the neurologically involved patient, provides the therapist with a powerful new treatment technique. In a group of stroke patients, shoulder subluxation was reduced significantly (p less than .05) at the completion of a six-week NMES program. Some of the problems, and possible solutions, unique to the development of electrical stimulation programs for the shoulder muscles are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.