Garsia and Remmel (JCT. A 41 (1986), 246-275) used rook configurations to give a combinatorial interpretation to the $q$-analogue of a formula of Frobenius relating the Stirling numbers of the second kind to the Eulerian polynomials. Later, Remmel and Wachs defined generalized $p,q$-Stirling numbers of the first and second kind in terms of rook placements. Additionally, they extended their definition to give a $p,q$-analogue of rook numbers for arbitrary Ferrers boards. In this paper, we use Remmel and Wach's definition and an extension of Garsia and Remmel's proof to give a combinatorial interpretation to a $p,q$-analogue of a formula of Frobenius relating the $p,q$-Stirling numbers of the second kind to the trivariate distribution of the descent number, major index, and comajor index over $S_n$. We further define a $p,q$-analogue of the hit numbers, and show analytically that for Ferrers boards, the $p,q$-hit numbers are polynomials in $(p,q)$ with nonnegative coefficients.
Recently, Benjamin, Plott, and Sellers proved a variety of identities involving sums of Pell numbers combinatorially by interpreting both sides of a given identity as enumerators of certain sets of tilings using white squares, black squares, and gray dominoes. In this article, we state and prove q-analogues of several Pell identities via weighted tilings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.