Photophysical measurements, recorded in aerated cyclohexane at 283 K, indicate that 1,4-bis(phenylethynyl)benzene behaves in a conventional manner, undergoing emission from the lowest vibrational level of the first excited singlet state; there is no evidence for aggregation of this material in cyclohexane solution in the concentration range (1-250) x 10(-6) mol dm(-3). However, in highly viscous, low-temperature glasses, the material does exhibit inhomogeneous fluorescence behavior, and wavelength-dependent excitation and emission spectra, indicative of a slow rate of relaxation of conformers of the excited states compared to the rate of fluorescence.
Several azaxanthone and azathioxanthone sensitising chromophores have been incorporated into macrocyclic ligands and form well-defined Eu and Tb complexes in polar media. Excitation of the heterocyclic chromophore in the range 330 to 382 nm leads to modest amounts of aromatic fluorescence and relatively efficient metal-based luminescence, with absolute metal-based quantum yields of up to 24% in aqueous media.
A series of 9,10-bis(phenylethynyl)anthracenes decorated with sterically demanding tert-butyl substituents have been prepared and spectroscopically characterised. We demonstrate that the introduction of two bulky substituents in the ortho position of the phenyl rings effectively locks the ground state into a conformation in which the three rings are orthogonal. Fluorescence spectroscopy reveals evidence for partial planarisation of this compound in the excited state at ambient temperature, but this is prevented in low temperature solvent glasses.
Picosecond time-resolved resonance Raman spectroscopy, TR3, reveals an intense acetylenic band in the S1 state of the prototypical molecular wire 1,4-bis(phenylethynyl)benzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.