Given a graph G, the k-dominating graph of G, D k (G), is defined to be the graph whose vertices correspond to the dominating sets of G that have cardinality at most k. Two vertices in D k (G) are adjacent if and only if the corresponding dominating sets of G differ by either adding or deleting a single vertex. The graph D k (G) aids in studying the reconfiguration problem for dominating sets. In particular, one dominating set can be reconfigured to another by a sequence of single vertex additions and deletions, such that the intermediate set of vertices at each step is a dominating set if and only if they are in the same connected component of D k (G). In this paper we give conditions that ensure D k (G) is connected.arXiv:1209.5138v2 [math.CO]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.