In an attempt to overcome the limitations and drawbacks of using fresh platelets for transfusion therapy of thrombocytopenic patients, we have performed in vitro experiments on an autologous, semi-artificial alternative to platelet transfusions. Based on our previous studies of the interactions of unactivated and activated platelets with beads coated with peptides of various lengths, all of which contained the arginine-glycineaspartic acid (RGD) cell recognition sequence, the peptide Ac-CGGRGDF-NH2 was chosen for covalent coupling to erythrocytes. A heterobifunctional crosslinking reagent (N-maleimido-6-aminocaproyl ester of 1-hydroxy-2-nitrobenzene4-sulfonic acid) was used to crosslink via the peptide's free sulfhydryl group and the erythrocyte's surface amino groups. Approximately 0.5-1.5 X 106 peptide molecules bound per erythrocyte after 2 h of incubation, and most of the peptides appeared to crosslink to glycophorin A. The resulting cells, termed thromboerythrocytes, interacted selectively with activated platelets to form mixed aggregates. Studies with fluid phase RGD peptides and monoclonal antibodies indicated that the RGD peptides on the thromboerythrocytes interacted with the GPIIb/ lila receptors on activated platelets. Thromboerythrocytes could also bind to platelets adherent to collagen. There was minimal erythrocyte hemolysis during the formation of thromboerythrocytes and studies of thromboerythrocyte osmotic fragility and cellular deformability showed no significant changes from control erythrocytes. Whereas there is a 20:1 ratio of erythrocytes to platelets in the circulation of normal individuals, the erythrocytes from as little as 50 ml of blood could be transformed into the equivalent of 2 U of platelets by numbers (equivalent to 18 U of platelets by mass), and reinfused into the same individual within several hours. These data encourage us to proceed to in vivo studies to assess the hemostatic efficacy of thromboerythrocytes in thrombocytopenic animals. (J. Clin.
Hantaviruses infect human endothelial and immune cells, causing two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). We have identified key signaling elements termed immunoreceptor tyrosine-based activation motifs (ITAMs) within the G1 cytoplasmic tail of all HPS-causing hantaviruses. ITAMs direct receptor signaling within immune and endothelial cells and the presence of ITAMs in all HPS-causing hantaviruses provides a means for altering normal cellular responses which maintain vascular integrity. The NY-1 G1 ITAM was shown to coprecipitate a complex of phosphoproteins from cells, and the G1 ITAM is a substrate for the Src family kinase Fyn. The hantavirus ITAM coprecipitated Lyn, Syk, and ZAP-70 kinases from T or B cells, while mutagenesis of the ITAM abolished these interactions. In addition, G1 ITAM tyrosines directed intracellular interactions with Syk by mammalian two-hybrid analysis. These findings demonstrate that G1 ITAMs bind key cellular kinases that regulate immune and endothelial cell functions. There is currently no means for establishing the role of the G1 ITAM in hantavirus pathogenesis. However, the conservation of G1 ITAMs in all HPS-causing hantaviruses and the role of these signaling elements in immune and endothelial cells suggest that functional G1 ITAMs are likely to dysregulate normal immune and endothelial cell responses and contribute to hantavirus pathogenesis.
Peptides derived from the recently identified thrombin receptor were tested for their ability to induce platelet aggregation in platelet-rich plasma. The 14 amino acid peptide identified as the new N-terminus after thrombin cleavage (T-14) and an 11 amino acid peptide (T-11) lacking the 3 C-terminal amino acids of T-14 were studied. Both induced platelet aggregation at micromolar concentrations, with T-11 about twice as potent as T-14. Induction of platelet aggregation by these two peptides showed an unusual pH dependence, being more potent at pH 7.2 than at pH 8.1; thrombin-induced aggregation showed a reverse pH dependence. Proton NMR studies of T-11 demonstrated that the chemical shift of the C-alpha proton of the N-terminal serine had a pH dependence that mirrored the aggregation potency. Acetylating the N-terminus of T-11 resulted in loss of aggregating activity, and this peptide did not show the pH-dependence change in chemical shift. The T-14 and T-11 peptides lost aggregating activity when incubated in plasma due to cleavage of the N-terminal serine by an enzyme identified as aminopeptidase M based on its pattern of inhibition and the ability of purified aminopeptidase M (EC3.4.11.2) to cleave the T-11 peptide. Endothelial cell aminopeptidase M was also able to cleave T-11. Inhibiting aminopeptidase M with amastatin enhanced aggregation induced by T-11 but not thrombin. These studies suggest that ionization of the N-terminus of the T-11 and T-14 peptides may be important in initiating platelet aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.