Accurate and high-resolution data reflecting different climate scenarios are vital for policy makers when deciding on the development of future energy resources, electrical infrastructure, transportation networks, agriculture, and many other societally important systems. However, state-of-the-art long-term global climate simulations are unable to resolve the spatiotemporal characteristics necessary for resource assessment or operational planning. We introduce an adversarial deep learning approach to super resolve wind velocity and solar irradiance outputs from global climate models to scales sufficient for renewable energy resource assessment. Using adversarial training to improve the physical and perceptual performance of our networks, we demonstrate up to a 50× resolution enhancement of wind and solar data. In validation studies, the inferred fields are robust to input noise, possess the correct small-scale properties of atmospheric turbulent flow and solar irradiance, and retain consistency at large scales with coarse data. An additional advantage of our fully convolutional architecture is that it allows for training on small domains and evaluation on arbitrarily-sized inputs, including global scale. We conclude with a super-resolution study of renewable energy resources based on climate scenario data from the Intergovernmental Panel on Climate Change’s Fifth Assessment Report.
The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) was not thought to multimerize. Rayaprolu et al. show that Ci-VSP exists as a dimer and that this interaction lowers the voltage dependence of activation and alters substrate specificity.
Finite element analysis of solid mechanics is a foundational tool of modern engineering, with low-order finite element methods and assembled sparse matrices representing the industry standard for implicit analysis. We use performance models and numerical experiments to demonstrate that highorder methods greatly reduce the costs to reach engineering tolerances while enabling effective use of GPUs. We demonstrate the reliability, efficiency, and scalability of matrix-free p-multigrid methods with algebraic multigrid coarse solvers through large deformation hyperelastic simulations of multiscale structures. We investigate accuracy, cost, and execution time on multi-node CPU and GPU systems for moderate to large models using AMD MI250X (OLCF Crusher), NVIDIA A100 (NERSC Perlmutter), and V100 (LLNL Lassen and OLCF Summit), resulting in order of magnitude efficiency improvements over a broad range of model properties and scales. We discuss efficient matrix-free representation of Jacobians and demonstrate how automatic differentiation enables rapid development of nonlinear material models without impacting debuggability and workflows targeting GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.