for the RIME Investigators Background-The role of mitral valve repair (MVR) during coronary artery bypass grafting (CABG) in patients with moderate ischemic mitral regurgitation (MR) is uncertain. We conducted a randomized, controlled trial to determine whether repairing the mitral valve during CABG may improve functional capacity and left ventricular reverse remodeling compared with CABG alone. Methods and Results-Seventy-three patients referred for CABG with moderate ischemic MR and an ejection fraction Ͼ30%were randomized to receive CABG plus MVR (34 patients) or CABG only (39 patients). The study was stopped early after review of interim data. At 1 year, there was a greater improvement in the primary end point of peak oxygen consumption in the CABG plus MVR group compared with the CABG group (3.3 mL/kg/min versus 0.8 mL/kg/min; PϽ0.001). There was also a greater improvement in the secondary end points in the CABG plus MVR group compared with the CABG group: left ventricular end-systolic volume index, MR volume, and plasma B-type natriuretic peptide reduction of 22.2 mL/m
In this small group of patients showing CMR evidence of significant myocardial inducible perfusion defect and viability, CTO recanalization reduces ischemic burden, favors reverse remodeling, and ameliorates quality of life.
Cardiovascular magnetic resonance (CMR) is increasingly used to assess patients with mitral regurgitation. Its advantages include quantitative determination of ventricular volumes and function and the mitral regurgitant fraction, and in ischemic mitral regurgitation, regional myocardial function and viability. In addition to these, identification of leaflet prolapse or restriction is necessary when valve repair is contemplated. We describe a systematic approach to the evaluation of mitral regurgitation using CMR which we have used in 149 patients with varying etiologies and severity of regurgitation over a 15 month period.Following standard ventricular cine acquisitions, including 2, 3 and 4 chamber long axis views and a short axis stack for biventricular function, we image movements of all parts of the mitral leaflets using a contiguous stack of oblique long axis cines aligned orthogonal to the central part of the line of coaptation. The 8–10 slices in the stack, orientated approximately parallel to a 3-chamber view, are acquired sequentially from the superior (antero-lateral) mitral commissure to the inferior (postero-medial) commissure, visualising each apposing pair of anterior and posterior leaflet scallops in turn (A1-P1, A2-P2 and A3-P3). We use balanced steady state free precession imaging at 1.5 Tesla, slice thickness 5 mm, with no inter-slice gaps. Where the para-commissural coaptation lines curve relative to the central region, two further oblique cines are acquired orthogonal to the line of coaptation adjacent to each commissure. To quantify mitral regurgitation, we use phase contrast velocity mapping to measure aortic outflow, subtracting this from the left ventricular stroke volume to calculate the mitral regurgitant volume which, when divided by the left ventricular stroke volume, gives the mitral regurgitant fraction. In patients with ischemic mitral regurgitation, we further assess regional left ventricular function and, with late gadolinium enhancement, myocardial viability.Comprehensive assessment of mitral regurgitation using CMR is feasible and enables determination of mitral regurgitation severity, associated leaflet prolapse or restriction, ventricular function and viability in a single examination and is now routinely performed at our centre. The mitral valve stack of images is particularly useful and easy to acquire.
Purpose:To improve 3D volume-selective turbo spin echo (TSE) carotid artery wall imaging by incorporating navigators to reduce artifacts caused by swallowing. Materials and Methods:Images were acquired on a Siemens Magnetom Sonata 1.5T scanner. 3D volume-selective TSE scans of the carotid arteries were acquired in six healthy volunteers. A cross-pair navigator placed on the back of the tongue was used to detect swallowing and movement. Two swallowing patterns were tested: 1) a single swallow approximately halfway through the scan time, at the center of k z , and 2) repeated swallowing as often as possible throughout the scan period. Images were acquired with and without navigators for comparison. Signal intensity in the lumen was quantified for the quality of blood suppression, and the clarity of the vessel wall in the common carotid was ranked by four independent blinded observers. Results:In general, lower signal intensity was recorded in the lumen, and decreased blurring and ghosting were observed on scans with navigator control. This reduction in lumen signal intensity signifies an improvement in the black-blood imaging technique. The differences likely reflect the improved double inversion/blood suppression efficiency due to cycles being rejected when the heart rate changed at the point of swallowing, or decreased motional blurring/ghosting of tissue when the navigator is used, or a combination of these two effects. A statistical analysis of image quality showed a significant difference between navigated and non-navigated scans as scored by four independent, blinded observers. For both swallowing patterns, the mean score for the navigator images was on average 0.6 greater than that of non-navigator images (on a scoring scale of 0 -5, where 0 ϭ no vessel visible, and 5 ϭ good delineation and blood suppression) and P-values for all observers were less than 0.01. Overall, the central swallow scans were scored higher than the repeated swallow scans. One reason for this may be the fact that the heart rate increased on swallowing, and this often lasted for one or two cardiac cycles after the navigator returned to the normal acceptance position. The effect of the increased heart rate after swallowing is likely to have an effect on double inversion blood suppression efficiency. Therefore, the increased amount of heart rate changes with repeated swallowing may have a greater adverse effect, even if the navigator rejects data views during the swallowing motion. Conclusion:The clarity of vessel wall delineation and the apparent efficiency of blood suppression are reduced by swallowing during acquisition. Both motion blurring and quality of blood suppression are factors that can be improved with the use of a navigator accept/reject method.
A 61-year-old man, an ex-smoker with a history of hypercholesterolemia, presented with crushing central chest pain radiating to the left arm, nausea, and cold sweat after consuming up to 2 g of recreational cocaine. ECG revealed Q waves in V 1 through V 3 with associated marginal ST-segment elevation of Ͻ1 mm (Figure 1). His troponin I level was 13.7 g/L (normal range 0 to 0.04 g/L). The patient was treated with dual antiplatelet therapy in addition to low-molecular-weight heparin and a calcium antagonist. He was referred for invasive coronary angiography, which demonstrated proximal occlusion of the left anterior descending artery (Figure 2) associated with anterior akinesia on ventriculography. To assess viability in this territory, myocardial perfusion scintigraphy and cardiovascular magnetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.