In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications.
Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.
Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10(-4) cps Bq(-1), which is 2.5 times lower than the sensitivity of a dual-head system with LEHR PAR collimators. Spatial resolution, on the other hand, has clearly improved compared to LEHR PAR: with the multi-lofthole system we successfully reconstructed 4 mm hot rods. Although this improved resolution did not result in an unambiguous improvement in CNR or NPW-SNR, we believe that the flexibility of the shutter mechanism opens interesting perspectives toward time-multiplexing and integration with MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.