Abstract. Parasite-specific antibody responses were detected using an indirect fluorescent antibody (IFA) test in cattle that were naturally or experimentally infected with Neospora parasites. The test was developed using Neospora tachyzoites isolated from an aborted bovine fetus and grown in bovine cell cultures (isolate BPA1). In all cases, infections were confirmed by the identification of Neospora tachyzoites and/or bradyzoite cysts in fetal or calf tissues using an immunoperoxidase test procedure. Fifty-five naturally infected cows that aborted Neospora-infected fetuses had titers of 320-5,120 at the time of abortion. The titer of 6 cows that were serologically monitored over a prolonged period decreased to 160-640 within 150 days after they aborted infected fetuses. Two of the cows showed an increase in their Neospora titers during their subsequent pregnancy, and they gave birth to congenitally infected calves that had precolostral titers of 10,240-20,480. Postcolostral titers of these calves and of 4 other calves with congenital Neospora infections were all 25,120, whereas calves with no detectable parasites had titers ≤ 160. Two pregnant heifers that were experimentally infected with the BPA1 isolate at approximately 120 days gestation seroconverted to Neospora antigens within 9 days and developed peak titers of 5,120 and 20,480 within 32 days of infection. The fetus taken by caesarian section 32 days postinfection from 1 heifer and the full-term calf born to the other had Neospora titers of 640 and 10,240, respectively. Nine cows that aborted uninfected fetuses and 61 adult cattle maintained under pasture or feedlot conditions, where risk of exposure to Neospora was considered to be low, had titers ≤ 320. Some of the feedlot cattle tested had serologic reactivity that was restricted to antigens at the apical end of both Neospora and Toxoplasma gondii tachyzoites. This type of reactivity, which may result from serologic cross-reactivity between conserved apical complex antigens of closely related sporozoan parasites, differed from the whole parasite fluorescence that was observed with sera from Neospora-infected animals. The significance of these results and the potential application of the IFA test for the diagnosis of Neospora infections in cattle are discussed.
A Neospora sp. was isolated from the brains of two aborted bovine foetuses and grown continuously in vitro in bovine cell cultures. A comparison of the antigenic reactivity of in vitro cultivated tachyzoites with polyclonal antisera to Neospora caninum, Hammondia hammondi or Toxoplasma gondii revealed that the bovine protozoal isolates were similar to N. caninum and antigenically distinct from T. gondii. Tachyzoites of both bovine isolates had similar ultrastructural features, including an apical polar ring, conoid, electron-dense rhoptries and micronemes. The orientation of the micronemes, presence of micropores and a large number of electron-dense granules in the posterior portion of the bovine isolate tachyzoites differed from previous descriptions of N. caninum in vivo. Tachyzoites of the bovine isolates were ultrastructurally more similar to in vitro cultivated N. caninum tachyzoites than to tachyzoites of T. gondii or H. hammondi. The antigenic and ultrastructural similarities between N. caninum and the protozoal parasites isolated from aborted bovine foetuses in this study support the proposition that these parasites belong to the genus Neospora.
Abstract. Studies were conducted to determine the pathogenic potential of the recently isolated bovine Neospora protozoa (BPA-1) for the bovine fetus. Cows chosen for study had Neospora titers < 160 using an indirect immunofluorescent antibody (IFA) test. Four experimental groups were studied. In group 1, 2 fetuses were inoculated in utero at 118 days gestation with culture-derived Neospora tachyzoites. A pregnant control cow was housed in the same pen, observed daily and screened serologically for evidence of exposure to Neospora. In group 2, 2 cows were infected with Neospora tachyzoites at 138 or 161 days gestation, and 1 control cow was given uninfected cell culture suspension simultaneously at 154 days gestation. Groups 3 (85 days gestation) and 4 (120 days gestation) each consisted of 2 cows infected with Neospora tachyzoites and 1 control cow given uninfected material at the same stage of gestation. Dead fetuses were surgically removed from the infected cows in group 1 on postinfection day (PID) 17. The histopathology was compatible with protozoa1 fetal infection, and protozoa were identified by immunohistochemistry. Viable fetuses were removed surgically from cows in group 2 on PID 28-30. The histopathology was compatible with protozoa1 fetal infection, protozoa were identified by immunoperoxidase techniques, and Neospora tachyzoites were reisolated in vitro from tissues of the 2 infected fetuses. In groups 3 and 4, the control fetus and 1 infected fetus were removed surgically between PID 26 and PID 33. The remaining infected cows were observed until fetal death or abortion occurred. In group 3, the fetus that was surgically removed from 1 infected cow had no pathologic abnormalities, and parasites were not found (PID 26). The second fetus in group 3 died in utero, and expulsion of a mummified fetus was induced on PID 67. Brain histopathology was compatible with protozoa1 infection, and parasites were identified by immunoperoxidase techniques. The fetus that was surgically removed (PID 32) from 1 infected cow in group 4 had lesions compatible with protozoa1 infection, and Neospora tachyzoites were reisolated in vitro from fetal tissues. The second infected cow in group 4 produced a full-term live calf that had a precolostral Neospora titer of 20,480. Clinically, this calf had depressed conscious proprioception in all limbs. Very mild lesions were found in the central nervous system, but protozoa were not found in the tissues. The results demonstrate that the bovine Neospora protozoa can be transplacentally transmitted, resulting in fetal infection and death, and mimics the naturally occurring fetal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.