The Saccharomyces cerevisiae endocytic protein Pan1 is critical for coat interactions during three transitions of the endocytic pathway. Pan1 depletion arrests endocytosis and causes actin misregulation, leading to actin flares that are connected to the coat but not the membrane. The Pan1 central region is critical for endocytic and essential functions.
Student learning in biology may be impaired by instructional environments that emphasize technical methodology over analysis. We hypothesized that time gained by experimenting with accurate computer simulations could be used to engage students in analytical, creative learning. The effects of treatments that combined a week of simulated lab instruction with a week of standard lab instruction in different order (E-to-S and S-to-E) were examined using a controlled experimental design with random assignment of lab sections and hierarchical linear modeling analysis to account for possible clustering within sections. Data from a large sample of students (N = 515) revealed a significant increase (1.59 SD) in posttest scores for both treatment groups over the control. We posit as a plausible explanation the reinforcement of psychomotor learning due to strong engagement of cognitive processes facilitated by the computer simulation. This study supports a wider use of computer simulations as learning tools in laboratory courses.
Pan1 is a multi-domain scaffold that enables dynamic interactions with both structural and regulatory components of the endocytic pathway. Pan1 is composed of Eps15 Homology (EH) domains which interact with adaptor proteins, a central region that is responsible for its oligomerization and C-terminal binding sites for Arp2/3, F-actin, and type-I myosin motors. In this study, we have characterized the binding sites between Pan1 and its constitutive binding partner End3, another EH domain containing endocytic protein. The C-terminal End3 Repeats of End3 associate with the N-terminal part of Pan1’s central coiled-coil region. These repeats appear to act independently of one another as tandem, redundant binding sites for Pan1. The end3-1 allele was sequenced, and corresponds to a C-terminal truncation lacking the End3 Repeats. Mutations of the End3 Repeats highlight that those residues which are identical between these repeats serve as contact sites for the interaction with Pan1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.