Abstract. Numerical simulation of large-scale dynamical systems plays a fundamental role in studying a wide range of complex physical phenomena; however, the inherent large-scale nature of the models often leads to unmanageable demands on computational resources. Model reduction aims to reduce this computational burden by generating reduced models that are faster and cheaper to simulate, yet accurately represent the original large-scale system behavior. Model reduction of linear, nonparametric dynamical systems has reached a considerable level of maturity, as reflected by several survey papers and books. However, parametric model reduction has emerged only more recently as an important and vibrant research area, with several recent advances making a survey paper timely. Thus, this paper aims to provide a resource that draws together recent contributions in different communities to survey the state of the art in parametric model reduction methods. Parametric model reduction targets the broad class of problems for which the equations governing the system behavior depend on a set of parameters. Examples include parameterized partial differential equations and large-scale systems of parameterized ordinary differential equations. The goal of parametric model reduction is to generate low-cost but accurate models that characterize system response for different values of the parameters. This paper surveys state-of-the-art methods in projection-based parametric model reduction, describing the different approaches within each class of methods for handling parametric variation and providing a comparative discussion that lends insights to potential advantages and disadvantages in applying each of the methods. We highlight the important role played by parametric model reduction in design, control, optimization, and uncertainty quantification-settings that require repeated model evaluations over different parameter values.
In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs and varying fidelities. Typically, a computationally expensive high-fidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are less accurate but computationally cheaper than the high-fidelity model. Outer-loop applications, such as optimization, inference, and uncertainty quantification, require multiple model evaluations at many different inputs, which often leads to computational demands that exceed available resources if only the high-fidelity model is used. This work surveys multifidelity methods that accelerate the solution of outer-loop applications by combining high-fidelity and low-fidelity model evaluations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g., a simplified physics approximation, a reduced model, a data-fit surrogate, etc.) that approximates the same output quantity as the high-fidelity model. The overall premise of these multifidelity methods is that low-fidelity models are leveraged for speedup while the high-fidelity model is kept in the loop to establish accuracy and/or convergence guarantees. We categorize multifidelity methods according to three classes of strategies: adaptation, fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts of uncertainty propagation, inference, and optimization.
A model-constrained adaptive sampling methodology is proposed for the reduction of large-scale systems with high-dimensional parametric input spaces. Our model reduction method uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number of sample points throughout the parametric input space. A key challenge that must be addressed in the optimization, control, and probabilistic settings is the need for the reduced models to capture variation over this parametric input space, which, for many applications, will be of high dimension.We pose the task of determining appropriate sample points as a PDE-constrained optimization problem, which is implemented using an efficient adaptive algorithm that scales well to systems with a large number of parameters. The methodology is demonstrated using examples with parametric input spaces of dimension 11 and 21, which describe thermal analysis and design of a heat conduction fin, and compared with statistically based sampling methods. For these examples, the model-constrained adaptive sampling leads to reduced models that, for a given basis size, have error several orders of magnitude smaller than that obtained using the other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.