A mouse platelet-derived growth factor A chain (PDGF-A) null allele is shown to be homozygous lethal, with two distinct restriction points, one prenatally before E10 and one postnatally. Postnatally surviving PDGF-A-deficient mice develop lung emphysema secondary to the failure of alveolar septation. This is apparently caused by the loss of alveolar myofibroblasts and associated elastin fiber deposits. PDGF alpha receptor-positive cells in the lung having the location of putative alveolar myofibroblast progenitors were specifically absent in PDGF-A null mutants. We conclude that PDGF-A is crucial for alveolar myofibroblast ontogeny. We have previously shown that PDGF-B is required in the ontogeny of kidney mesangial cells. The PDGFs therefore appear to regulate the generation of specific populations of myofibroblasts during mammalian development. The two PDGF null phenotypes also reveal analogous morphogenetic functions for myofibroblast-type cells in lung and kidney organogenesis.
PDGF-A(−/−) mice lack lung alveolar smooth muscle cells (SMC), exhibit reduced deposition of elastin fibres in the lung parenchyma, and develop lung emphysema due to complete failure of alveogenesis. We have mapped the expression of PDGF-A, PDGF receptor-alpha, tropoelastin, smooth muscle alpha-actin and desmin in developing lungs from wild type and PDGF-A(−/−) mice of pre- and postnatal ages in order to get insight into the mechanisms of PDGF-A-induced alveolar SMC formation and elastin deposition. PDGF-A was expressed by developing lung epithelium. Clusters of PDGF-Ralpha-positive (PDGF-Ralpha+) mesenchymal cells occurred at the distal epithelial branches until embryonic day (E) 15.5. Between E16.5 and E17.5, PDGF-Ralpha+ cells multiplied and spread to acquire positions as solitary cells in the terminal sac walls, where they remained until the onset of alveogenesis. In PDGF-A(−/−) lungs PDGF-Ralpha+ cells failed to multiply and spread and instead remained in prospective bronchiolar walls. Three phases of tropoelastin expression were seen in the developing lung, each phase characterized by a distinct pattern of expression. The third phase, tropoelastin expression by developing alveolar SMC in conjunction with alveogenesis, was specifically and completely absent in PDGF-A(−/−) lungs. We propose that lung PDGF-Ralpha+ cells are progenitors of the tropoelastin-positive alveolar SMC. We also propose that postnatal alveogenesis failure in PDGF-A(−/−) mice is due to a prenatal block in the distal spreading of PDGF-Ralpha+ cells along the tubular lung epithelium during the canalicular stage of lung development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.