Time-lapse 4D imaging of fluorescently tagged proteins to follow the dynamics of cellular structures (chromosomes, microtubules, actin, centrosomes, cortical structures like the CAB in ascidians, etc.) combined with targeted gene knockdown during embryonic development is a powerful technique to understand the mechanisms of embryonic development. The eggs and embryos of the primitive marine chordate Phallusia mammillata are an excellent model system for combining live cell imaging with gene knockdown experiments. Here we describe simple methods for microinjecting Phallusia eggs with mRNA encoding fluorescent fusion proteins combined with 4D time-lapse imaging techniques we use to follow all of embryonic development from the egg to late tailbud stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.