Purpose To determine if the change in tumor apparent diffusion coefficient (ADC) at diffusion-weighted (DW) MRI is predictive of pathologic complete response (pCR) to neoadjuvant chemotherapy for breast cancer. Materials and Methods In this prospective multicenter study, 272 consecutive women with breast cancer were enrolled at 10 institutions (from August 2012 to January 2015) and were randomized to treatment with 12 weekly doses of paclitaxel (with or without an experimental agent), followed by 12 weeks of treatment with four cycles of anthracycline. Each woman underwent breast DW MRI before treatment, at early treatment (3 weeks), at midtreatment (12 weeks), and after treatment. Percentage change in tumor ADC from that before treatment (ΔADC) was measured at each time point. Performance for predicting pCR was assessed by using the area under the receiver operating characteristic curve (AUC) for the overall cohort and according to tumor hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) disease subtype. Results The final analysis included 242 patients with evaluable serial imaging data, with a mean age of 48 years ± 10 (standard deviation); 99 patients had HR-positive (hereafter, HR+)/HER2-negative (hereafter, HER2-) disease, 77 patients had HR-/HER2- disease, 42 patients had HR+/HER2+ disease, and 24 patients had HR-/HER2+ disease. Eighty (33%) of 242 patients experienced pCR. Overall, ΔADC was moderately predictive of pCR at midtreatment/12 weeks (AUC = 0.60; 95% confidence interval [CI]: 0.52, 0.68; P = .017) and after treatment (AUC = 0.61; 95% CI: 0.52, 0.69; P = .013). Across the four disease subtypes, midtreatment ΔADC was predictive only for HR+/HER2- tumors (AUC = 0.76; 95% CI: 0.62, 0.89; P < .001). In a test subset, a model combining tumor subtype and midtreatment ΔADC improved predictive performance (AUC = 0.72; 95% CI: 0.61, 0.83) over ΔADC alone (AUC = 0.57; 95% CI: 0.44, 0.70; P = .032.). Conclusion After 12 weeks of therapy, change in breast tumor apparent diffusion coefficient at MRI predicts complete pathologic response to neoadjuvant chemotherapy. © RSNA, 2018 Online supplemental material is available for this article.
Prepregnancy maternal obesity confers an increased risk of stillbirth, but the mechanisms are unknown. Maternal obesity is associated with placental inflammation. We considered that maternal diet may predispose to the increased risk of placental inflammation and stillbirth. We hypothesized that a chronic high-fat diet (HFD) is associated with abnormal uteroplacental circulation and placental inflammation. Here we used a nonhuman primate model to determine the effect of chronic HFD on the uterine and placental hemodynamics, placental histology, and inflammation in a prospective, observational study of 24 Japanese macaques. Overall, there was a statistically significant (38-56%) reduction in uterine volume blood flow from HFD animals, whether they were lean or obese. Consumption of a HFD, independent of obesity, increased placental inflammatory cytokines and the expression of Toll-like receptor 4. We show that HFD consumption by obese mothers with hyperinsulinemia also reduced volume blood flow on the fetal side of the placenta and significantly increased the frequency of both placental infarctions and stillbirth. These results suggest that a HFD, independent of obesity, decreases uterine volume blood flow. Maternal obesity and insulin resistance further exacerbates the placental dysfunction and results in an increased frequency of stillbirth.
Shutter-speed pharmacokinetic analysis of [Dynamic-Contrast-Enhanced] DCE-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here – transcytolemmal water exchange – is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while Ktrans [measuring mostly contract agent (CA) extravasation] and kep [CA intravasation rate constant] decrease, τi increases. However, high-resolution, (1 mm)2, parametric maps exhibit significant intra-tumar heterogenity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 1013 H2O molecules/s/cell for a 12 µm diameter cell. Analyses of intra-tumor variations (and therapy-induced changes) of τi in combination with concomitant changes of Ve [extracellular volume fraction] inducate the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, Pw, not of cell size. These can be interpreted in light of literature results showing τi changes are dominated by a Pw(active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na+,K+-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.
Cdx1 encodes a mammalian homeobox gene involved in vertebral patterning. Retinoic acid (RA) is likewise implicated in vertebral patterning. We have previously shown that Cdx1 is a direct retinoid target gene, suggesting that Cdx1 may convey some of the effects of retinoid signaling. However, RA appears to be essential for only early stages of Cdx1 expression, and therefore other factors must be involved in maintaining later stages of expression. Based on function and pattern of expression, Wnt family members, in particular Wnt3a, are candidates for regulation of expression of Cdx1. Consistent with this, we confirm prior results which demonstrated that Cdx1 can be directly regulated by Wnt signaling, and identify functional LEF/TCF response motifs essential for this response. We also find that Cdx1 expression is markedly attenuated in a stage- and tissue-specific fashion in the Wnt3a hypomorph vestigial tail, and present data demonstrating that Wnt3a and RA synergize strongly to activate Cdx1. Finally, we show that Cdx1 positively regulates its own expression. These data prompt a model whereby retinoid and Wnt signaling function directly and synergistically to initiate Cdx1 expression in the caudal embryo. Expression is then maintained, at least in part, by an autoregulatory mechanism at later stages.
There is considerable evidence that the Cdx gene products impact on vertebral patterning by direct regulation of Hox gene expression. Data from a number of vertebrate model systems also suggest that Cdx1, Cdx2 and Cdx4 are targets of caudalizing signals such as RA, Wnt and FGF. These observations have lead to the hypothesis that Cdx members serve to relay information from signaling pathways involved in posterior patterning to the Hox genes. Regulation of Cdx1 expression by RA and Wnt in the mouse has been well characterized; however, the means by which Cdx2 and Cdx4 are regulated is less well understood. In the present study, we present data suggesting that Cdx4 is a direct target of the canonical Wnt pathway. We found that Cdx4 responds to exogenous Wnt3a in mouse embryos ex vivo, and conversely, that its expression is down-regulated in Wnt3a(vt/vt) embryos and in embryos cultured in the presence of Wnt inhibitors. We also found that the Cdx4 promoter responds to Wnt signaling in P19 embryocarcinoma cells and have identified several putative LEF/TCF response elements mediating this effect. Consistent with these data, chromatin immunoprecipitation assays from either embryocarcinoma cells or from the tail bud of embryos revealed that LEF1 and beta-catenin co-localize with the Cdx4 promoter. Taken together, these results suggest that Cdx4, like Cdx1, is a direct Wnt target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.