Angiogenesis, the sprouting of new blood vessels from pre‐existing ones, and the permeability of blood vessels are regulated by vascular endothelial growth factor (VEGF) via its two known receptors Flt1 (VEGFR‐1) and KDR/Flk‐1 (VEGFR‐2). The Flt4 receptor tyrosine kinase is related to the VEGF receptors, but does not bind VEGF and its expression becomes restricted mainly to lymphatic endothelia during development. In this study, we have purified the Flt4 ligand, VEGF‐C, and cloned its cDNA from human prostatic carcinoma cells. While VEGF‐C is homologous to other members of the VEGF/platelet derived growth factor (PDGF) family, its C‐terminal half contains extra cysteine‐rich motifs characteristic of a protein component of silk produced by the larval salivary glands of the midge, Chironomus tentans. VEGF‐C is proteolytically processed, binds Flt4, which we rename as VEGFR‐3 and induces tyrosine autophosphorylation of VEGFR‐3 and VEGFR‐2. In addition, VEGF‐C stimulated the migration of bovine capillary endothelial cells in collagen gel. VEGF‐C is thus a novel regulator of endothelia, and its effects may extend beyond the lymphatic system, where Flt4 is expressed.
Platelet-derived growth factors (PDGFs) are important in many types of mesenchymal cell. Here we identify a new PDGF, PDGF-C, which binds to and activates the PDGF alpha-receptor. PDGF-C is activated by proteolysis and induces proliferation of fibroblasts when overexpressed in transgenic mice. In situ hybridization analysis in the murine embryonic kidney shows preferential expression of PDGF-C messenger RNA in the metanephric mesenchyme during epithelial conversion. Analysis of kidneys lacking the PDGF alpha-receptor shows selective loss of mesenchymal cells adjacent to sites of expression of PDGF-C mRNA; this is not found in kidneys from animals lacking PDGF-A or both PDGF-A and PDGF-B, indicating that PDGF-C may have a unique function.
Edema occurs in asthma and other inflammatory diseases when the rate of plasma leakage from blood vessels exceeds the drainage through lymphatic vessels and other routes. It is unclear to what extent lymphatic vessels grow to compensate for increased leakage during inflammation and what drives the lymphangiogenesis that does occur. We addressed these issues in mouse models of (a) chronic respiratory tract infection with Mycoplasma pulmonis and (b) adenoviral transduction of airway epithelium with VEGF family growth factors. Blood vessel remodeling and lymphangiogenesis were both robust in infected airways. Inhibition of VEGFR-3 signaling completely prevented the growth of lymphatic vessels but not blood vessels. Lack of lymphatic growth exaggerated mucosal edema and reduced the hypertrophy of draining lymph nodes.
Antila et al. show that meningeal lymphatic vessels in mice develop postnatally. Interruption of VEGF-C/VEGFR3 signal transduction arrests their development. In adult mice, VEGFR3 deletion and VEGFR3 blockers, including a clinically available tyrosine kinase inhibitor, induce regression of meningeal lymphatic vessels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.