The absolute nodal coordinate formulation can be used in multibody system applications where the rotation and deformation within the finite element are large and where there is a need to account for geometrical non-linearities. In this formulation, the gradients of the global positions are used as nodal coordinates and no rotations are interpolated over the finite element. For thin plate and shell elements, the plane stress conditions can be applied and only gradients obtained by differentiation with respect to the element mid-surface spatial parameters need to be defined. This automatically reduces the number of element degrees of freedoms, eliminates the high frequencies due to the oscillations of some gradient components along the element thickness, and as a result makes the plate element computationally more efficient. In this paper, the performance of a thin plate element based on the absolute nodal coordinate formulation is investigated. The lower dimension plate element used in this investigation allows for an arbitrary rigid body displacement and large deformation within the element. The element leads to a constant mass matrix and zero Coriolis and centrifugal forces. The performance of the element is compared with other plate elements previously developed using the absolute nodal coordinate formulation. It is shown that the finite element used in this investigation is much more efficient when compared with previously proposed elements in the case of thin structures. Numerical examples are presented in order to demonstrate the use of the formulation developed in this paper and the computational advantages gained from using the thin plate element. The thin plate element examined in this study can be efficiently used in many applications including modelling of paper materials, belt drives, rotor dynamics, and tyres.
In this paper, new nonlinear dynamic formulations for belt drives based on the three-dimensional absolute nodal coordinate formulation are developed. Two large deformation three-dimensional finite elements are used to develop two different belt-drive models that have different numbers of degrees of freedom and different modes of deformation. Both threedimensional finite elements are based on a nonlinear elasticity theory that accounts for geometric nonlinearities due to large deformation and rotations. The first element is a thin-plate element that is based on the Kirchhoff plate assumptions and captures both membrane and bending stiffness effects. The other threedimensional element used in this investigation is a cable element obtained from a more general threedimensional beam element by eliminating degrees of freedom which are not significant in some cable and belt applications. Both finite elements used in this investigation allow for systematic inclusion or exclusion of the bending stiffness, thereby enabling systematic examination of the effect of bending on the nonlinear dynamics of belt drives. The finite-element formulations developed in this paper are implemented in a general purpose three-dimensional flexible multibody algorithm that allows for developing more detailed models of mechanical systems that include belt drives subject to general loading conditions, nonlinear algebraic constraints, and arbitrary large displacements. The use of the formulations developed in this investigation is demonstrated using two-roller belt-drive system. The results obtained using the two finite-element formulations are compared and the convergence of the two finite-element solutions is examined.
In this work, a shear deformable three-dimensional beam element that can be used to model a variety of beam-like structures in multibody applications is proposed. The absolute nodal coordinate formulation, in which global displacements and slopes are used as nodal coordinates, is employed for the finite element discretization of the beam. The element employs a crosssectional coordinate system for the definition of strains. As shown by numerical examples, the element leads to a computationally more efficient description of elastic forces compared to the previously introduced shear deformable absolute nodal coordinatebased beam element. The results imply that the proposed element is capable of modelling highly nonlinear displacements and can be used in problems where large rotations are considered. The element also captures the effect of the rotation of the cross-section about the element longitudinal axis under a torsion load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.