Proteins secreted by Mycobacterium tuberculosis play an essential role in the pathogenesis of tuberculosis. The culture filtrates of M. tuberculosis H37Rv made by Sadamu Nagai (Japan), are considerably enriched for secreted proteins compared to other culture filtrates. Complementary approaches were used to identify the secreted proteins in these culture filtrates: (i) 2-DE combined with MALDI-TOF MS and (ii) LC coupled MS/MS. Peptides derived from a total of 257 proteins were identified of which 144 were identified by more than one peptide. Several members of the immunologically important early secretory antigenic target-6 (ESAT-6) family of proteins were found to be major components. The majority of the identified proteins, 159 (62%), were predicted to be exported through the general secretory pathway. We experimentally verified that the signal peptides, which mediate translocation through the cell membrane, had been removed in 41 of the identified proteins, and in 35 of those, there was an AXA motif N-terminally to the cleavage site, showing that this motif is important for the recognition and cleavage of signal peptides in mycobacteria. A large fraction of the secreted proteins were unknown, suggesting that we have mapped an unexplored part of the exported proteome of M. tuberculosis. complement.
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies.
The protein phosphatase (PP) inhibitors nodularin and microcystin-LR induced apoptosis with unprecedented rapidity, more than 50% of primary hepatocytes showing extensive surface budding and shrinkage of cytoplasm and nucleoplasm within 2 min. The apoptosis was retarded by the general caspase inhibitor Z-VAD.fmk. To circumvent the inefficient uptake of microcystin and nodularin into nonhepatocytes, toxins were microinjected into 293 cells, Swiss 3T3 fibroblasts, promyelocytic IPC-81 cells, and NRK cells. All cells started to undergo budding typical of apoptosis within 0.5 ± 3 min after injection. This was accompanied by cytoplasmic and nuclear shrinkage and externalization of phosphatidylserine. Overexpression of Bcl-2 did not delay apoptosis. Apoptosis induction was slower and Z-VAD.fmk independent in caspase-3 deficient MCF-7 cells. MCF-7 cells stably transfected with caspase-3 showed a more rapid and Z-VAD.fmk dependent apoptotic response to nodularin. Rapid apoptosis induction required inhibition of both PP1 and PP2A, and the apoptosis was preceded by increased phosphorylation of several proteins, including myosin light chain. The protein phosphorylation occurred even in the presence of apoptosis-blocking concentrations of Z-VAD.fmk, indicating that it occurred upstream of caspase activation. It is suggested that phosphatase-inhibiting toxins can induce caspase-3 dependent apoptosis in an ultrarapid manner by altering protein phosphorylation.
The potent natural toxins microcystin, nodularin, and okadaic acid act rapidly to induce apoptotic cell death. Here we show that the apoptosis correlates with protein phosphorylation events and can be blocked by protein kinase inhibitors directed against the multifunctional Ca 2؉ /calmodulin-dependent protein kinase II (CaMKII). The inhibitors used comprised a battery of cell-permeable protein kinase antagonists and CaMKII-directed peptide inhibitors introduced by microinjection or enforced expression. Furthermore, apoptosis could be induced by enforced expression of active forms of CaMKII but not with inactive CaMKII. It is concluded that the apoptogenic toxins, presumably through their known ability to inhibit serine/threonine protein phosphatases, can cause CaMKII-dependent phosphorylation events leading to cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.