Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelialto-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting druginduced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients.
Ameloblastoma is a benign but locally infiltrative odontogenic neoplasm. Although ameloblastomas rarely metastasise, recurrences together with radical surgery often result in facial deformity and significant morbidity. Development of non-invasive therapies has been precluded by a lack of understanding of the molecular background of ameloblastoma pathogenesis. When addressing the role of ERBB receptors as potential new targets for ameloblastoma, we discovered significant EGFR over-expression in clinical samples using real-time RT–PCR, but observed variable sensitivity of novel primary ameloblastoma cells to EGFR-targeted drugs in vitro. In the quest for mutations downstream of EGFR that could explain this apparent discrepancy, Sanger sequencing revealed an oncogenic BRAF V600E mutation in the cell line resistant to EGFR inhibition. Further analysis of the clinical samples by Sanger sequencing and BRAF V600E-specific immunohistochemistry demonstrated a high frequency of BRAF V600E mutations (15 of 24 samples, 63%). These data provide novel insight into the poorly understood molecular pathogenesis of ameloblastoma and offer a rationale to test drugs targeting EGFR or mutant BRAF as novel therapies for ameloblastoma.
TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single–amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies.
The aim of the study was to characterize the molecular relationship between ameloblastoma and keratocystic odontogenic tumor (KCOT) by means of a genome-wide expression analysis. Total RNA from 27 fresh tumor samples of 15 solid/multicystic intraosseous ameloblastomas and 12 sporadic KCOTs was hybridized on Affymetrix whole genome arrays. Hierarchical clustering separated ameloblastomas and KCOTs into 2 distinct groups. The gene set enrichment analysis based on 303 dental genes showed a similar separation of ameloblastomas and KCOTs. Early dental epithelial markers PITX2, MSX2, DLX2, RUNX1, and ISL1 were differentially overexpressed in ameloblastoma, indicating its dental identity. Also, PTHLH, a hormone involved in tooth eruption and invasive growth, was one of the most differentially upregulated genes in ameloblastoma. The most differentially overexpressed genes in KCOT were squamous epithelial differentiation markers SPRR1A, KRTDAP, and KRT4, as well as DSG1, a component of desmosomal cell-cell junctions. Additonally, the epithelial stem cell marker SOX2 was significantly upregulated in KCOT when compared with ameloblastoma. Taken together, the gene expression profile of ameloblastoma reflects differentiation from dental lamina toward the cap/bell stage of tooth development, as indicated by dental epithelium-specific transcription factors. In contrast, gene expression of KCOT indicates differentiation toward keratinocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.