Aims: To examine work associated upper airway inflammation in 31 waste handlers, and to correlate these findings with personally monitored exposure to different bioaerosol components. Methods: Cell differentials, interleukin 8 (IL-8), myeloperoxidase (MPO), and eosinophilic cationic protein (ECP) were examined in NAL (nasal lavage), and swelling of the nasal mucosa was determined by acoustic rhinometry before work start on Monday and the following Thursday. Bioaerosol exposure was determined by personal full shift exposure measurements on Monday, Tuesday, and Wednesday and analysed for total bacteria, fungal spores, endotoxin, and β(1→3)-glucans.
Work-associated lower airway inflammation in waste collectors was examined by induced sputum and correlated with the bioaerosol exposure.Organic waste collectors (n=25) underwent induced sputum collection and spirometry before work on Monday and the following Thursday. Total cells, cell differentials, interleukin (IL)-8 and eosinophilic cationic protein were determined. Personal full-shift exposure measurements were performed Monday, Tuesday and Wednesday and analysed for total bacteria, fungal spores, endotoxins and b (1-3) -glucans.The percentage of neutrophils (46-58%) and the IL-8 concentration (1.1-1.4 ng?mL
Personal exposure to airborne bacteria and symptoms were studied in 24 sewage workers. An association between levels of total bacteria, rod-shaped bacteria, and symptoms, such as tiredness and headache, during and after work was found.
A tolerance effect during the course of a workweek is suggested. Use of water hose is a risk process with regard to the liberation of measured components of bioaerosols.
BackgroundThe aims of this study was to assess exposure to hydrogen sulphide (H2S) among waste water treatment workers (WWWs), and achieve a better measure of the risks of H2S exposure than only using the eight-hour average value and the ceiling value because the exposure pattern of H2S for WWWs is dominated by short-term peaks.MethodsNinety-three measurements of H2S from 56 WWWs in three cities and three rural areas were collected. All exposure measurements were carried out from the start of the day until lunch time (sampling time 4–5 h) when most of the practical work was performed. The type of tasks and extent of flushing were registered. H2S was measured using direct-reading instruments with logging: OdaLog L2/LL, Dräger X-am 5000 and Dräger Pac 7000 (0.1–200 ppm). Number and duration of peaks for different work tasks, seasons, places and extent of flushing were combined in an exposure index (IN), and evaluated in a mixed-model analysis, building a model aimed to predict exposure for different job tasks.ResultsNine Percent (8 of 93) of all H2S measurements have peaks above 10 ppm; in addition, 15% (14 of 93) have peaks of 5–10 ppm, 35% (33 of 93) have peaks of 1–5 ppm and 65% (62 of 93) have peaks of 0.1–1 ppm. 29% of the measurements of hydrogen sulphide showed no registered level > 0.1 ppm.From the mixed-model analyses we see that exposure level, expressed as H2S index IN, varied between places, work type, season and degree of flushing. For the work in a plant in the capital, the exposure index varied from 0.02 for working in spring doing some flushing, to 0.7 for working at the same plant in winter doing flushing more than three times or more than 10 min. Collecting sewage from cesspools in city 2 in winter doing a lot of flushing gave a hydrogen sulphide index of 230.ConclusionsThe use of a H2S index, taking into consideration peak height, duration and number of peaks, could be a tool for exposure assessment for H2S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.