Abstract. Organic aerosols (OA) derived from small-scale wood combustion emissions are not well represented by current emissions inventories and models, although they contribute substantially to the atmospheric particulate matter (PM) levels. In this work, a 29 m3 smog chamber in the ILMARI facility of the University of Eastern Finland was utilized to investigate the formation of secondary organic aerosol (SOA) from a small-scale modern masonry heater commonly used in northern Europe. Emissions were oxidatively aged in the smog chamber for a variety of dark (i.e., O3 and NO3) and UV (i.e., OH) conditions, with OH concentration levels of (0.5–5) × 106 molecules cm−3, achieving equivalent atmospheric aging of up to 18 h. An aerosol mass spectrometer characterized the direct OA emissions and the SOA formed from the combustion of three wood species (birch, beech and spruce) using two ignition processes (fast ignition with a VOC-to-NOx ratio of 3 and slow ignition with a ratio of 5).Dark and UV aging increased the SOA mass fraction with average SOA productions 2.0 times the initial OA mass loadings. SOA enhancement was found to be higher for the slow ignition compared with fast ignition conditions. Positive matrix factorization (PMF) was used to separate SOA, primary organic aerosol (POA) and their subgroups from the total OA mass spectra. PMF analysis identified two POA and three SOA factors that correlated with the three major oxidizers: ozone, the nitrate radical and the OH radical. Organonitrates (ONs) were observed to be emitted directly from the wood combustion and additionally formed during oxidation via NO3 radicals (dark aging), suggesting small-scale wood combustion may be a significant ON source. POA was oxidized after the ozone addition, forming aged POA, and after 7 h of aging more than 75 % of the original POA was transformed. This process may involve evaporation and homogeneous gas-phase oxidation as well as heterogeneous oxidation of particulate organic matter. The results generally prove that logwood burning emissions are the subject of intensive chemical processing in the atmosphere, and the timescale for these transformations is relatively short, i.e., hours.
There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.
Abstract. A 29 m 3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h −1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO 2 photolysis rate can be adjusted from 0 to 0.62 min −1 . The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m −2 , which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25 ± 1 • C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42 %, depending on the initial conditions, such as NO x concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5 % and 5.8-19.5 % were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.
The respirable particles in both outdoor and indoor air contain several different components that are considered to have adverse health effects; e.g., polycyclic aromatic hydrocarbons (PAHs), various metals and microbial species. In this study, size segregated particle samples were collected for chemical, microbial and toxicological analyses from the indoor and outdoor air during each season of the year. The indoor sampling was carried out in a new, detached house with a novel sampling approach. The inorganic species accounted for 8-43% of the total respirable particles. The highest fine particle metal concentrations, both outdoors and indoors, were observed during summer, when the air quality was affected by wildfire smoke plumes, while in coarse particles the total metal concentrations were the highest during the spring, due to the high contribution from mineral dust. The PAH concentrations were 1.3 to 4.8 times higher in outdoor than in indoor air, and they were clearly the highest during winter, most probably due to residential heating, which is a major PAH source. PAHs with four rings had the largest contribution to the total PAHs. Microbial DNA was observed in all size classes, but the highest concentrations were measured in the coarse (PM 2.5-10 ) fraction. The microbial concentrations were higher in the indoor air samples during winter, while in the outdoor ones during summer.
Abstract. The fraction of gasoline direct-injection (GDI) vehicles comprising the total vehicle pool is projected to increase in the future. However, thorough knowledge about the influence of GDI engines on important atmospheric chemistry processes is missing – namely, their contribution to secondary organic aerosol (SOA) precursor emissions, contribution to SOA formation, and potential role in biogenic–anthropogenic interactions. The objectives of this study were to (1) characterize emissions from modern GDI vehicles and investigate their role in SOA formation chemistry and (2) investigate biogenic–anthropogenic interactions related to SOA formation from a mixture of GDI-vehicle emissions and a model biogenic compound, α-pinene. Specifically, we studied SOA formation from modern GDI-vehicle emissions during the constant-load driving. In this study we show that SOA formation from GDI-vehicle emissions was observed in each experiment. Volatile organic compounds (VOCs) measured with the proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) could account for 19 %–42 % of total SOA mass generated in each experiment. This suggests that there were lower-volatility intermediate VOCs (IVOCs) and semi-volatile organic compounds (SVOCs) in the GDI-vehicle exhaust that likely contributed to SOA production but were not detected with the instrumentation used in this study. This study also demonstrates that two distinct mechanisms caused by anthropogenic emissions suppress α-pinene SOA mass yield. The first suppressing effect was the presence of NOx. This mechanism is consistent with previous reports demonstrating suppression of biogenic SOA formation in the presence of anthropogenic emissions. Our results indicate a possible second suppressing effect, and we suggest that the presence of anthropogenic gas-phase species may have suppressed biogenic SOA formation by alterations to the gas-phase chemistry of α-pinene. This hypothesized change in oxidation pathways led to the formation of α-pinene oxidation products that most likely did not have vapor pressures low enough to partition into the particle phase. Overall, the presence of gasoline-vehicle exhaust caused a more than 50 % suppression in α-pinene SOA mass yield compared to the α-pinene SOA mass yield measured in the absence of any anthropogenic influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.