To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.
In this work, ab initio electronic structure computations have been used to systematically examine the structures and energetics of nine small hydrocarbon molecules interacting with water. Full geometry optimizations and harmonic vibrational frequency calculations were performed on 30 unique dimer configurations with the MP2 method and a triple-ζ correlation consistent basis set (cc-pVTZ for H and aug-cc-pVTZ for C and O, denoted haTZ). Three different estimates of the CCSD(T) complete basis set (CBS) limit interaction energies were determined for all 30 MP2 optimized hydrocarbon/water structures, and they never deviate from their mean by more than 0.07 kcal mol(-1). MP2 and CCSD(T) interaction energies are virtually identical (within 0.05 kcal mol(-1)) for dimer configurations primarily exhibiting CH···O and OH···C type interactions, but MP2 overbinds appreciably in some dimers that exhibited OH···π type interactions, by as much as 0.3 to 0.4 kcal mol(-1) (or ≈10%) for the unsaturated cyclic hydrocarbons examined (1,3-cyclobutadiene, 1,3-cyclopentadiene, and benzene). Four density functional theory (DFT) methods (B3LYP, B97-D, ωB97X-D, and M06-2X) were also applied to all 30 systems with the haTZ basis set to compare optimized structures, energetics, and numbers of imaginary vibrational frequencies (ni). The B97-D, ωB97X-D, and M06-2X functionals provide quite reasonable structures and energetics, which is consistent with other studies. This work, however, finds that all 4 DFT methods examined struggle to reliably characterize these potential energy surfaces (PESs). For example, the values of ni from the DFT frequency calculations differed from the corresponding MP2 results for approximately one-third of the stationary points located.
The redox properties of DNA play an influential role in several important processes such as DNA mutation and the interaction of DNA with drugs. Structural changes in DNA nucleobases from its canonical form to its tautomeric forms can alter these properties and may lead to DNA mutation due to altered base-pairing properties. Experimental results for the standard value of DNA redox properties vary due to choice of methodology and solvent. Theoretical determination of these properties is helpful in pinpointing standard values but still vary depending on methodology and chosen experimental benchmark. However, it is of importance to identify the overall trend of electron mobility within DNA while providing reliable standard values for redox reactions. In this work, we present the results of theoretical calculations for redox properties. Using the thermodynamic cycle, we can approximate reliable values. We report the electron affinities, ionization potentials, and redox potential for the canonical DNA nucleobases and their rare tautomers. For each of these properties, we evaluate its overall trend to gain a greater understanding of the role that electron attachment and electron mobility have within the DNA strand. All calculations are computed at the M06-2X/ 6-3111G(d,p) level of theory.
The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.