Refractive error is the most common eye disorder worldwide, and a prominent cause of blindness. Myopia affects over 30% of Western populations, and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses including 37,382 individuals from 27 studies of European ancestry, and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in subjects of European ancestry, of which 8 were shared with Asians. Combined analysis revealed 8 additional loci. The new loci include genes with functions in neurotransmission (GRIA4), ion channels (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2, BMP2), and eye development (SIX6, PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for subjects with the highest genetic load. Our results, accumulated across independent multi-ethnic studies, considerably advance understanding of mechanisms involved in refractive error and myopia.
Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways.
Background and purpose A novel association between a single nucleotide polymorphism (SNP) on chromosome 7p21.1 and large vessel ischaemic stroke, was recently identified. The most likely underlying gene is histone deacetylase 9 (HDAC9). The mechanism by which HDAC9 increases stroke risk is not clear; both vascular and neuronal mechanisms have been proposed. Methods We determined whether the lead SNPs were associated with asymptomatic carotid plaque (N=25179) and carotid intima-media thickness (N=31210) detected by carotid ultrasound in a meta-analysis of population based and community cohorts. Immunohistochemistry was used to determine whether HDAC9 was expressed in healthy human cerebral and systemic arteries. In the Tampere Vascular Study we determined whether HDAC9 mRNA expression was altered in carotid (N=29), abdominal aortic (N=15) and femoral (N=24) atherosclerotic plaques compared with control (left internal thoracic, N=28) arteries. Results Both SNPs (rs11984041 and rs2107595) were associated with common carotid IMT (rs2107595 p=0.0018) and with presence of carotid plaque (rs2107595 p=0.0022). In both cerebral and systemic arteries, HDAC9 labelling was seen in nuclei and cytoplasm of vascular smooth muscle cells, and in endothelial cells. HDAC9 expression was upregulated in carotid plaques compared to left internal thoracic controls (p=0.00000103). It was also up-regulated in aortic and femoral plaques compared to controls, with mRNA expression increased in carotid compared with femoral plaques (p=0.0038). Conclusions Our results are consistent with the 7p21.1 association acting via promoting atherosclerosis, and consistent with alterations in HDAC9 expression mediating this increased risk. Further studies in experimental models are required to confirm this link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.