How the integrity of laminar structures in the postnatal brain is maintained impacts neuronal functions. Ndel1, the mammalian homolog of NuDE from the filamentous fungus Aspergillus nidulans, is an atypical microtubule (MT)-associated protein that was initially investigated in the contexts of neurogenesis and neuronal migration. Constitutive knock-out mice for Ndel1 are embryonic lethal, thereby necessitating the creation a conditional knock-out to probe the roles of Ndel1 in postnatal brains. Here we report that CA1 pyramidal neurons from mice postnatally lacking Ndel1 (Ndel1 conditional knock-out) exhibit fragmented MTs, dendritic/synaptic pathologies, are intrinsically hyperexcitable and undergo dispersion independently of neuronal migration defect. Secondary to the pyramidal cell changes is the decreased inhibitory drive onto pyramidal cells from interneurons. Levels of the glycoprotein Reelin that regulates MTs, neuronal plasticity, and cell compaction are significantly reduced in hippocampus of mutant mice. Strikingly, a single injection of Reelin into the hippocampus of Ndel1 conditional knock-out mice ameliorates ultrastructural, cellular, morphological, and anatomical CA1 defects. Thus, Ndel1 and Reelin contribute to maintain postnatal CA1 integrity.
Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills.
A decade ago, the large 600 kDa mammalian protein p600 (also known as UBR4) was discovered as a multifunctional protein with roles in anoikis, viral transformation and protein degradation. Recently, p600 has emerged as a critical protein in the mammalian brain with roles in neurogenesis, neuronal migration, neuronal signaling and survival. How p600 integrates these apparently unrelated functions to maintain tissue homeostasis and murine survival remains unclear. The common molecular basis underlying many of the actions of p600 suggests, however, certain conservation and transposition of these functions across systems. In this review, we summarize the central nervous system functions of p600 and propose new perspectives on its biological complexity in neuronal physiology and neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.