Introduction Gestational diabetes mellitus (GDM) significantly increases maternal and fetal health risks, but factors predictive of GDM are poorly understood. Objectives Plasma metabolomics analyses were conducted in early pregnancy to identify potential metabolites associated with prediction of Gestational Diabetes Mellitus (GDM). Methods Sixty-eight pregnant women with overweight/obesity from a clinical trial of a lifestyle intervention were included. Participants who developed GDM (n=34; GDM group) were matched on treatment group, age, body mass index, and ethnicity with those who did not develop GDM (n=34; Non-GDM group). Blood draws were completed early in pregnancy (10-16 weeks). Plasma samples were analyzed by UPLC-MS using three metabolomics assays. Results One hundred thirty moieties were identified. Thirteen metabolites including pyrimidine/purine derivatives involved in uric acid metabolism, carboxylic acids, fatty acylcarnitines, and sphingomyelins (SM) were different when comparing the GDM vs. the Non-GDM groups (p<0.05). The most significant differences were elevations in the metabolites’ hypoxanthine, xanthine and alpha-hydroxybutyrate (p<0.002, adjusted p<0.02) in GDM patients. A panel consisting of four metabolites: SM 14:0, hypoxanthine, alpha-hydroxybutyrate, and xanthine presented the highest diagnostic accuracy with an AUC= 0.833 (95% CI: 0.572686-0.893946), classifying as a “very good panel”. Conclusion: Plasma metabolites mainly involved in purine degradation, insulin resistance, and fatty acid oxidation, were altered in early pregnancy in connection with subsequent GDM development.
Wild blueberries (WBs) have been documented to decrease oxidative stress in active and sedentary populations as well as influence lipolytic enzymes and increase the rate of fat oxidation (FAT-ox) during rest. To examine the effect of WBs on the rate of FAT-ox and lipid peroxidation during submaximal exercise, 11 healthy, aerobically trained males (26 ± 7.5 years, 74.9 ± 7.54 kg, 10.5 ± 3.2% BF) completed a 2-week washout avoiding foods high in anthocyanins, then completed a control exercise protocol cycling at 65% of VO2peak for 40 min. Participants then consumed 375 g/d of anthocyanins for two weeks before repeating the exercise protocol. WBs increased FAT-ox when cycling at 65% of VO2peak by 19.7% at 20, 43.2% at 30, and 31.1% at 40 min, and carbohydrate oxidation (CHO-ox) decreased by 10.1% at 20, 19.2% at 30, and 14.8% at 40 min of cycling at 65% of VO2peak. Lactate was lower with WBs at 20 (WB: 2.6 ± 1.0, C: 3.0 ± 1.1), 30 (WB: 2.2 ± 0.9, C: 2.9 ± 1.0), and 40 min (WB: 1.9 ± 0.8, C: 2.5 ± 0.9). Results indicate that WBs may increase the rate of FAT-ox during moderate-intensity activity in healthy, active males.
Inadequate vitamin and mineral intake is documented among individuals with obesity, but is unknown among long-term weight loss maintainers (WLM). This study examined dietary quality and micronutrient adequacy among WLMs in a commercial weight management program. Participants were 1207 WLM in Weight Watchers (WW) who had maintained a 9.1 kg or greater weight loss (29.7 kg on average) for 3.4 years and had a body mass index (BMI) of 28.3 kg/m 2 . A control group of weight stable adults with obesity (controls; N = 102) had a BMI of 41.1 kg/m 2 . Measures included the Diet History Questionnaire-II, Healthy Eating Index-2015 (HEI), and Dietary References Intakes. WLM versus controls had a 10.1 point higher HEI score (70.2 (69.7-70.7) vs. 60.1 (58.4-61.8); p = 0.0001) and greater odds of meeting recommendations for copper (OR = 5.8 (2.6-13.1)), magnesium (OR = 2.9 (1.8-4.7)), potassium (OR = 4.7 (1.4-16.5)), vitamin A (OR = 2.8 (1.7-4.8)), vitamin B6 (OR = 2.9 (1.6-5.2)), and vitamin C (OR = 5.0 (2.8-8.8)). WLM, compared to controls, also reported higher percentages of calories from carbohydrates (50. 3% (49.7-50.8) vs. 46.7% (44.8-48.7); p = 0.0001) and protein (18.2% (18.0-18.5) vs. 15.9% (15.1-16.6); p = 0.0001) and lower calories from fat (32.3% (31.9-32.8) vs. 37.4% (35.8-38.9); p = 0.0001). Long-term weight loss maintenance in a widely used commercial program was associated with a healthier diet pattern, including consuming foods with higher micronutrient density.
Gestational Diabetes Mellitus (GDM) results in complications affecting both mothers and their offspring. Metabolomic analysis across pregnancy provides an opportunity to better understand GDM pathophysiology. The objective was to conduct a metabolomics analysis of first and third trimester plasma samples to identify metabolic differences associated with GDM development. Forty pregnant women with overweight/obesity from a multisite clinical trial of a lifestyle intervention were included. Participants who developed GDM (n = 20; GDM group) were matched with those who did not develop GDM (n = 20; Non-GDM group). Plasma samples collected at the first (10−16 weeks) and third (28−35 weeks) trimesters were analyzed with ultra-performance liquid chromatography−mass spectrometry (UPLC-MS). Cardiometabolic risk markers, dietary recalls, and physical activity metrics were also assessed. Four medium-chain acylcarnitines, lauroyl-, octanoyl-, decanoyl-, and decenoylcarnitine, significantly differed over the course of pregnancy in the GDM vs Non-GDM group in a group-by-time interaction (p < 0.05). Hypoxanthine and inosine monophosphate were elevated in the GDM group (p < 0.04). In both groups over time, bile acids and sorbitol increased while numerous acylcarnitines and αhydroxybutyrate decreased (p < 0.05). Metabolites involved in fatty acid oxidation and purine degradation were altered across the first and third trimesters of GDM-affected pregnancies, providing insight into metabolites and metabolic pathways altered with GDM development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.